ציר המספרים – הבדלי גרסאות

נוספו 765 בתים ,  לפני 13 שנים
אין תקציר עריכה
מ (בוט מוסיף: nl:Getallenlijn)
אין תקציר עריכה
'''ציר המספרים''' או '''ישר המספרים''' הוא תמונה חד-ממדית של [[קו ישר]], עליו מסומנות נקודות, המציינות את המספרים השלמים. הנקודות המציינות את המספרים השלמים מצויות במרחקים שווים אחת משכנתה, המרחק בין שתי נקודות סמוכות מכונה יחידה אחת והמרחק בין נקודה כלשהי ובין הנקודה המציינת את המספר 0 (אפס) שווה לערך המוחלט של המספר המצוין על ידי אותה נקודה. בדרך כלל, מוצג ציר המספרים כקו אופקי, כאשר הנקודות שמימין לנקודת ה-0 מתארות מספרים חיוביים והנקודות שמשמאל לנקודת ה-0 מתארות מספרים שליליים.
ככל שהנקודה רחוקה יותר מהמספר אפס, כן ערכה גדול יותר (הדבר נכון לגבי מספרים חיוביים ושליליים כאחד). בדרך כלל, מוצג ציר המספרים כקו אופקי, כאשר הנקודות שמימין לנקודת ה-0 מתארות מספרים חיוביים והנקודות שמשמאל לנקודת ה-0 מתארות מספרים שליליים.
 
כאשר נתונות שתי נקודות כלשהן על גבי ציר המספרים, הנקודה הימנית מבין השתיים מייצגת את המספר הגדול יותר.
ציר המספרים המתאר מספרים שלמים ניתן להרחבה כך שיתאר את כל המספרים הממשיים (כאשר כל נקודה עליו מייצגת [[מספר ממשי]] יחיד וכל מספר ממשי מיוצג על ידי נקודה יחידה).
 
המרחק בין שתי נקודות x<sub>1</sub> ו- x<sub>2</sub> הנמצאות על ציר המספרים יחושב בעזרת הנוסחה <math> |x_2 - x_1| </math>.
 
'''ציר המספרים''' יוצר זיקה בין שני עולמות עיקריים של ה[[מתמטיקה]]: ה[[גאומטריה]], שממנה נלקח ה[[ישר]], וה[[אריתמטיקה]], ממנה נלקחו ה[[מספר|מספרים]]. בין ה[[מספר ממשי|מספרים הממשיים]] ובין ה[[נקודה (גאומטריה)|נקודות]] על הישר קיימת [[התאמה חד-חד ערכית]], שאותה מייצג ציר המספרים. התאמה זו יוצרת את [[הישר הממשי]].
[[תמונה:Number-line.gif|מסגרת|מרכז|ציר המספרים]]
 
בציר המספרים משתמשים לסימון קבוצות מספרים. נבחין בין המצבים <math> X < 7 </math> ו - <math> X \leq 7 </math> ע"י סימון נקודת הקצה של הקטע באופן הבא: אם x<7 יסומן קצה הקטע בעיגול ריק ואם <math> X \leq 7 </math> יסומן קצה הקטע בעיגול מלא.
נהוג לדבר גם על [[מישור המספרים]], שמכיל גם ייצוג של [[מספר מרוכב|המספרים המרוכבים]].
 
בנוסף לכך, "ציר המספרים" עוזר בפתרון גרפי של בעיות אי-שוויונות. כאשר מערכות של אי-שוויונות מתוארות כמערכות "או" (אי-שוויון אחד מתקיים או השני) ומערכות "וגם" (שני אי-השוויונות מתקיימים בבת אחת) אשר פתירתם מבוססת על שימוש ב[[דיאגרמת ון]] כדי להציג חיתוך או איחוד בין שתי קבוצות של תשובות על ציר המספרים.
משתמש אלמוני