משתמש:בנצי/ארגז חול ??: פילוגנטיקה מולקולרית

פילוגנטיקה מולקולרית (כל הביטוי בהבלטה - אפשר, ראה התקדים האנגלי + מה נתון בסוגריים מסולסלות ?) היא תחום-דעת העוסק בחקר וניתוח ההבדלים המולקולריים במהלך הורשה, בעיקר ברצפי הדנ"א, כדי לקבל מידע על היחסים האבולוציוניים בין אורגניזמים (האם זו כוונת הכותב המקורי ? + לבחון גם אם כך ראוי לכתוב, ולא רק לתרגם, מתוך הבנת התחום). תוצאתו של ניתוח מולקולרי מתבטא בעץ פילוגנטי. פילוגנטיקה היא היבט אחד של סיסטמטיקה מולקולרית (יש ע"א לתחום ? יש ע"ע ל'סיסטמטיקה' ? + איך ראוי לתרגם את המונח ?), שהיא מונח רחב יותר הכולל גם שימוש בנתונים מולקולריים בטקסונומיה ובביו-גיאוגרפיה. Molecular phylogenetics תבנית:IPAc-en is the analysis of hereditary molecular differences, mainly in DNA sequences, to gain information on an organism's evolutionary relationships. The result of a molecular phylogenetic analysis is expressed in a phylogenetic tree. Molecular phylogenetics is one aspect of molecular systematics, a broader term that also includes the use of molecular data in taxonomy and biogeography.

רקע היסטורי של פילוגנטיקה מולקולרית עריכה

תבנית:ערך מורחב: המסגרות העיוניות לסיסטמטיקה (???) מולקולרית הונחו בשנות ה-60 בעבודותיהם של אמיל צוקרמנדל, עמנואל מרגוליאש, לינוס פאולינג ווואלטר מ' פיטש<>. עבודות חלוציות בהן יושמה פילוגנטיקה מולקולרית נעשו על-ידי צ'ארלס ג' סיבלי (ציפורים), הרברט ק' (?) דסאואר (הרפטולוגיה) ומוריס גודמן (פרימטים), ועבודות מאוחרות יותר של אלן ק' (?) ווילסון, רוברט ק' סלאנדר וג'ון אביס (?), שחקר קבוצות שונות. בסביבות 1956 החלו לעשות שימוש באלקטרופורזה של חלבונים]] בעבודות אלה, ולמרות שלא היו לשיטה זו תוצאות כמותיות אז, ובתחילה היא לא שיפרה את המיון המורפולוגי, תוצאות אלה ספקו רמזים ??? על כך שנחוצה ??? משמעותי (מהותי ?) של רעיונות ותיקים בדבר מיונם של ציפורים, למשל. בתקופה בה שלט השימוש בשיטת ???<> - ההמשך כאן לא ברור - לעיין בטקסט בהצגה הנורמלית שלה. להעתיק את המשפטים המקוריים האחרונים באנגלית - ניסוח מעניין, לשונית.

History of molecular phylogenetics עריכה

תבנית:Further The theoretical frameworks for molecular systematics were laid in the 1960s in the works of Emile Zuckerkandl, Emanuel Margoliash, Linus Pauling, and Walter M. Fitch.[1] Applications of molecular systematics were pioneered by Charles G. Sibley (birds), Herbert C. Dessauer (herpetology), and Morris Goodman (primates), followed by Allan C. Wilson, Robert K. Selander, and John C. Avise (who studied various groups). Work with protein electrophoresis began around 1956. Although the results were not quantitative and did not initially improve on morphological classification, they provided tantalizing hints that long-held notions of the classifications of birds, for example, needed substantial revision. In the period of 1974–1986, DNA-DNA hybridization was the dominant technique.[2]

שיטות (?) ויישומים עריכה

כל אורגניזם חי מכיל דנ"א, רנ"א, וחלבונים. באופן כללי, באורגניזמים הקרובים זה לזה ישנה רמה גבוהה דמיון (?) במבנן המולקולרי של חומרים (?) אלה, בעוד שהמולקולות באורגניזמים הרחוקים זה מזה מראות בדרך כלל, תבנית של אי-דמיון (?) - לשכתב את ההיגד האחרון, מעבר לדיוק ברמת המילה. מרצפים משתמרים, דוגמת דנ"א מיטוכונדריאלי, מצפים (?) שיצברו מוטציות במשך הזמן. עובדה (?) זו, יחד עם ההנחה שקצב היווצרותן של מוטציות הינו קבוע (גם כאן להעתיק את המשפט המקורי, ותירגומו - ממש מתח בין התירגום המילולי והתחבירי המדוייק לבין הסאבטקסט ('בין השורות' ?) - שתי דוגמאות מצויינות), מספקות שעון ביולוגי לתיארוך התבדרות (?). הפילוגניה (?) המולקולרית עושה שימוש בנתונים כאלה כדי לבנות 'עץ יחסים' (?) המראה את האבולוציה הסבירה (?) של אורגניזמים שונים. אולם, רק בעשרות השנים האחרונות (ראה הערה בסוגריים מסולסלות) ניתן היה (גם כאן תירגום) לבודד ולזהות את המבנים המולקולריים הללו.

הגישה הנפוצה (המקובלת) ביותר היא השוואת רצפי גנים הומולוגיים בעזרת כיוון (?) רצף על-מנת לזהות דמיון (?). יישום אחר לפילוגניה (?) מולקולרית הוא בתחום ???, בעוד ש(?) שמין האורגניזם הפרטי (?) מזוהה בעזרת קטעים (?) קטנים של דנ"א מיטוכונדריאלי או של דנ"א כלורופלסטי. יישום אחר לשיטות המאפשרות ??? (לא ברור) ניתן ??? בתחום המוגבל מאוד (?) של גנטיקה של האדם, כמו השימוש הפופולרי-מאז-ומתמיד במבחן גנטי (?) לקביעת הורה של ילד, כמו גם עלייתו של ענף חדש בזיהוי פלילי (?) המתמקד בראיות הידועות כטביעת אצבעות גנטית.

Techniques and applications עריכה

Every living organism contains DNA, RNA, and proteins. In general, closely related organisms have a high degree of agreement in the molecular structure of these substances, while the molecules of organisms distantly related usually show a pattern of dissimilarity. Conserved sequences, such as mitochondrial DNA, are expected to accumulate mutations over time, and assuming a constant rate of mutation provides a molecular clock for dating divergence. Molecular phylogeny uses such data to build a "relationship tree" that shows the probable evolution of various organisms. Not until recent decadesתבנית:Nonspecific, however, has it been possible to isolate and identify these molecular structures.

The most common approach is the comparison of homologous sequences for genes using sequence alignment techniques to identify similarity. Another application of molecular phylogeny is in DNA barcoding, wherein the species of an individual organism is identified using small sections of mitochondrial DNA or chloroplast DNA. Another application of the techniques that make this possible can be seen in the very limited field of human genetics, such as the ever-more-popular use of genetic testing to determine a child's paternity, as well as the emergence of a new branch of criminal forensics focused on evidence known as genetic fingerprinting.

רקע עיוני עריכה

ניסיונות מוקדמים בסיסטמטיקה מולקולרית כונו גם כמו(?)-טקסונומיה, ועשו שימוש בחלבונים, באנזימים, בפחמימנים (לוודא + לשחזר את שתי המשפחות), ומולקולות אחרות שהופרדו ואופיינו תוך שימוש בשיטות כמו כרומטוגרפיה.

Theoretical background עריכה

Early attempts at molecular systematics were also termed as chemotaxonomy and made use of proteins, enzymes, carbohydrates, and other molecules that were separated and characterized using techniques such as chromatography. These have been replaced in recent times largely by DNA sequencing, which produces the exact sequences of nucleotides or bases in either DNA or RNA segments extracted using different techniques. In general, these are considered superior for evolutionary studies, since the actions of evolution are ultimately reflected in the genetic sequences. At present, it is still a long and expensive process to sequence the entire DNA of an organism (its genome), and this has been done for only a few species. However, it is quite feasible to determine the sequence of a defined area of a particular chromosome. Typical molecular systematic analyses require the sequencing of around 1000 base pairs. At any location within such a sequence, the bases found in a given position may vary between organisms. The particular sequence found in a given organism is referred to as its haplotype. In principle, since there are four base types, with 1000 base pairs, we could have 41000 distinct haplotypes. However, for organisms within a particular species or in a group of related species, it has been found empirically that only a minority of sites show any variation at all and most of the variations that are found are correlated, so that the number of distinct haplotypes that are found is relatively small.

In a mack molecular systematic analysis, the haplotypes are determined for a defined area of genetic material; a substantial sample of individuals of the target species or other taxon is used, however many current studies are based on single individuals. Haplotypes of individuals of closely related, but different, taxa are also determined. Finally, haplotypes from a smaller number of individuals from a definitely different taxon are determined: These are referred to as an out group. The base sequences for the haplotypes are then compared. In the simplest case, the difference between two haplotypes is assessed by counting the number of locations where they have different bases: This is referred to as the number of substitutions (other kinds of differences between haplotypes can also occur, for example the insertion of a section of nucleic acid in one haplotype that is not present in another). The difference between organisms is usually re-expressed as a percentage divergence, by dividing the number of substitutions by the number of base pairs analysed: the hope is that this measure will be independent of the location and length of the section of DNA that is sequenced.

An older and superseded approach was to determine the divergences between the genotypes of individuals by DNA-DNA hybridisation. The advantage claimed for using hybridisation rather than gene sequencing was that it was based on the entire genotype, rather than on particular sections of DNA. Modern sequence comparison techniques overcome this objection by the use of multiple sequences.

Once the divergences between all pairs of samples have been determined, the resulting triangular matrix of differences is submitted to some form of statistical cluster analysis, and the resulting dendrogram is examined in order to see whether the samples cluster in the way that would be expected from current ideas about the taxonomy of the group, or not. Any group of haplotypes that are all more similar to one another than any of them is to any other haplotype may be said to constitute a clade. Statistical techniques such as bootstrapping and jackknifing help in providing reliability estimates for the positions of haplotypes within the evolutionary trees.

Limitations of molecular systematics עריכה

Molecular systematics is an essentially cladistic approach: it assumes that classification must correspond to phylogenetic descent, and that all valid taxa must be monophyletic.

The recent discovery of extensive horizontal gene transfer among organisms provides a significant complication to molecular systematics, indicating that different genes within the same organism can have different phylogenies.

In addition, molecular phylogenies are sensitive to the assumptions and models that go into making them. They face problems like long-branch attraction, saturation, and taxon sampling problems: This means that strikingly different results can be obtained by applying different models to the same dataset.[3]

See also עריכה

References עריכה

  1. ^ Edna Suárez-Díaz & Victor H. Anaya-Muñoz (2008) History, objectivity, and the construction of molecular phylogenies. Stud. Hist. Phil. Biol. & Biomed. Sci. 39:451–468
  2. ^ Ahlquist, Jon E., 1999: Charles G. Sibley: A commentary on 30 years of collaboration. The Auk, vol. 116, no. 3 (July 1999). A PDF or DjVu version of this article can be downloaded from the issue's table of contents page.
  3. ^ Philippe, H.; Brinkmann, H.; Lavrov, D. V.; Littlewood, D. T. J.; Manuel, M.; Wörheide, G.; Baurain, D. (2011). Penny, David (ed.). "Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough". PLoS Biology. 9 (3): e1000602. doi:10.1371/journal.pbio.1000602. PMC 3057953. PMID 21423652.

Further reading עריכה

  • Felsenstein, J. 2004. Inferring phylogenies. Sinauer Associates Incorporated. ISBN 0-87893-177-5.
  • Hillis, D. M. & Moritz, C. 1996. Molecular systematics. 2nd ed. Sinauer Associates Incorporated. ISBN 0-87893-282-8.
  • Page, R. D. M. & Holmes, E. C. 1998. Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford. ISBN 0-86542-889-1.
  • Soltis, P.S., Soltis, D.E., and Doyle, J.J. (1992) Molecular systematics of plants. Chapman & Hall, New York. ISBN-0-41202-231-1.
  • Soltis, P.S., Soltis, D.E., and Doyle, J.J. (1998) Molecular Systematics of Plants II: DNA Sequencing. Kluwer Academic Publishers Boston, Dordrecht, London. ISBN-0-41211-131-4.
  • San Mauro, D.; Agorreta, A. (2010). "Molecular systematics: a synthesis of the common methods and the state of knowledge". Cellular & Molecular Biology Letters. 15 (2): 311–341. doi:10.2478/s11658-010-0010-8.

External links עריכה

תבנית:Phylo

קטגוריה:Phylogenetics

קטגוריה:Molecular evolution