חבורה אלגברית קשירה

חבורה אלגברית קשירה היא חבורה אלגברית שבתור יריעה אלגברית היא יריעה אלגברית קשירה (זאת אומרת קשירה על פי הטופולוגיה של זריצקי). עבור כל חבורה אלגברית רכיב הקשירות של היחידה הוא תת-חבורה נורמלית (סגורה) וקשירה. מכאן שכל חבורה אלגבית היא הרחבה של חבורה אלגברית סופית וחבורה קשירה. לכן עיקר העיסוק בחבורות אלגברית מתמקד בחבורות קשירות.

לקריאה נוספת

עריכה
  • Milne, J. S. (2017), Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field, Cambridge University Press, ISBN 978-1107167483, MR 3729270

הערות שוליים

עריכה
  1. ^ כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה. עם זאת אנו דורשים שהחבורה תהיה קומוטטיבית, דרישה זו נובעת מהפרויקיטיביות/שלמות עבור חבורות קשירות, אך לא במקרה הכללי.
  2. ^ 1 2 3 כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה.
  3. ^ למושג "חבורה קלאסית" יש מספר משמעויות מקובלות. כל המשפחות שמופעות בדיאגרמה כאן תחת "חבורה קלאסית" נחשבות לכאלה על פי כל המשמעוית המוקובלות
  4. ^ כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה. עם זאת, מעל שדה ממציין 0, חבורה אוניפוטנטית היא תמיד קשירהפשוטת קשר), גם אם לא דרשים זאת בהגדרה.
  5. ^ לעיתים מושג זה נקרא "חבורה פשוטה".
  6. ^ כאן אנו משתמשים במוסכמה המצמצמת, שדורשת מחבורה פשוטה להיות חסרת מרכז. המושג ללא דרישה זו נקרא כאן "חבורה כמעט פשוטה".
  ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.