אקסיומות המנייה – הבדלי גרסאות

מ
שוחזר מעריכה של צהוב עולה (שיחה) לעריכה האחרונה של Felagund-bot
מ (שוחזר מעריכה של צהוב עולה (שיחה) לעריכה האחרונה של Felagund-bot)
==בסיס ובסיס מקומי של טופולוגיה==
 
"כידוע, 'מרחב טופולוגי"' כולל שני מרכיבים: מרחב, ואוסף של תת-קבוצות שלו, הנקראות 'קבוצות פתוחות'. כדי לחסוך בתאור אוסף הקבוצות הפתוחות, אפשר להסתפק בתאור של בסיס: אוסף של קבוצות פתוחות הוא [[בסיס לטופולוגיה|בסיס]] לטופולוגיה הנתונה, אם כל קבוצה פתוחה מהווה [[איחוד (מתמטיקה)|איחוד]] של קבוצות מן הבסיס; במלים אחרות, סביב כל נקודה בכל קבוצה פתוחה U, קיימת קבוצה מן הבסיס הכוללת את הנקודה ומוכלת בקבוצה. אוסף של קבוצות פתוחות הוא [[בסיס מקומי לטופולוגיה|בסיס מקומי]] בנקודה p, אם כל קבוצה פתוחה המכילה את p מכילה קבוצה מן האוסף. מכאן יוצא שאוסף קבוצות פתוחות הוא בסיס, אם ורק אם הוא מהווה בסיס מקומי בכל נקודה.
 
==אקסיומות המניה==