הבדלים בין גרסאות בדף "אלגברת הקווטרניונים של המילטון"

<math>c=x+yi=re^{i\theta}</math> ואותו ניתן לייחס לנקודה שהקורדינטות שלה הם (x,y). באופן דומה ניתן לתאר פעולות גאומטריות באמצעות פעולות אלגבריות על מספרים מרוכבים. לדוגמה סיבוב של נקודה c=x+iy בזווית <math>\alpha</math> מתבצעת על ידי הכפלה:
<math>c'=ce^{i\alpha}=c(cos(\alpha)+isin(\alpha))</math>.
בהתבסס על הקבלה זאת חיפש המילטון הכללה של המספרים המרוכבים שתאפשר לתאר גאומטריה תלת-ממדית. חיפושיו של המילטון לנוסחא שתאפשר הכפלה של קבוצות של שלושהשלשות מספרים עלו בתוהו. ב-16 באוקטובר 1843, בעת טיול עם אשתו לאורך התעלה המלכותית בדבלין, בעת שהשניים עברו בסמוך לגשר ברוגהם (Brougham Bridge) מצא המילטון את הפתרון המבוקש באמצעותהבסיס שימושלנוסחת בקבוצההכפל של ארבעהרביעיות מספרים. התלהבותו של המילטון מהתגלית הייתה כה גדולה עד כי, במעשה שכונה מאוחר יותר 'אקט של ואנדליזם מתמטי' הוא חרט על הגשר את הנוסחא הבסיסית לכפל קווטריונים:
<math>i^2=j^2=k^2=ijk=-1</math>. המילטון כינה את שדה המספרים שאותו הוא גילהשגילה בשם 'קווטרניונים' והקדיש למחקר וההפצה של הרעיון את שארית חייו. ספרו האחרון והארוך ביותר של המילטון 'יסודות הקווטרניונים' התפרסם לאחר מותו., ב-1863.
 
תלמידיו וממשיכי דרכו של המילטון, [[פיטר טייט]] ו[[בנימין פירס]] הרחיבו על האופן שבו ניתן להשתמש בקווטריונים לתאור פרקים בגאומטריה ובפיזיקה. כך לדוגמה הם הראו שאת [[משוואות מקסוול]] ניתן לכתוב באופן פשוט באמצעות קווטריונים. בסוף שנות ה-80 התנהל ויכוח מדעי ער בין התומכים בשימוש בקווטריונים לתאור גאומטריה תלת-ממדית, לבין התומכים בשימוש ב[[אנליזה וקטורית]]. בין היתר בזכות תמיכתם של פיזיקאים ומתמטיקאים כמו [[ג'וסיה וילארד גיבס]] ו[[אוליבר הביסייד]] הפך השימוש באנליזה וקטורית למקובל על הרוב המכריע של הקהילה המדעית. תמיכה זאת נבעה בין היתר מכך שתאור של גאומטריה אלגברית על ידי וקטורים נחשבה לפשוטה ואינטואיטיבית יותר, ומשום שהיא ניתנת להכללה לכל מספר שהוא של ממדים.