מרחב מכפלה פנימית – הבדלי גרסאות

הרחבה
(←‏דוגמאות למכפלות פנימיות: מכפלה פנימית מרוכבת הומוגנית רק ברכיב אחד - הימני או השמאלי? זוהי בחירה שרירותית)
(הרחבה)
:<math>\langle x,x\rangle =\overline{\langle x,x\rangle}</math> פירושו כי <math>\langle x,x\rangle</math> הוא מספר ממשי.
 
* האדיטיביות ניתנת להכללה באמצעות ההרמיטיות גם לרכיב השני. לעומת זאת ההומוגניות תישמר רק עד כדי [[צמוד מרוכב]] - כאשר מוציאים סקלר מהמכפלה הפנימית, יש להצמיד אותו:
:<math>\langle x,\lambda y\rangle =\overline{\lambda}\langle x,y\rangle</math>
 
** אם <math>\ \mathbb{F}=\mathbb{R}</math> אזי [[מכפלה סקלרית|המכפלה הסקלרית]] הבאה <math> \lang \vec{x} , \vec{y} \rang = x_1 y_1 + \cdots + x_n y_n </math> היא מכפלה פנימית.
** אם <math>\ \mathbb{F}=\mathbb{C}</math> אזי [[מכפלה סקלרית|המכפלה הסקלרית]] הבאה <math> \lang \vec{x} , \vec{y} \rang = x_1 \overline{y_1} + \cdots + x_n \overline{y_n} </math> היא מכפלה פנימית.
* [[מכפלה סקלרית|המכפלה הסקלרית]] הסטנדרטית ב[[מרחב אוקלידי|מרחב האוקלידי]] <math>\mathbb{R}^3</math> שנתונה על ידי <math>\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b} | \cos \theta</math> (כאשר <math>\theta</math> היא ה[[זווית]] בין ה[[וקטור (פיזיקה)|ווקטורים]]) היא מכפלה פנימית.
* מכפלת [[וקטור שורה]] ב[[וקטור עמודה]] לפי החוקים של [[כפל מטריצות]] מהווה מכפלה פנימית.
* את המכפלה הסקלרית אפשר לתאר באמצעות כתיב מטריציוני: <math> \lang \vec{x} , \vec{y} \rang = \vec{x}^T I \vec{y}</math> . אם נחליף את <math>\ I</math> ([[מטריצת היחידה]]) במטריצה <math>\ A</math> [[מטריצה חיובית|חיובית לחלוטין]] נקבל גם כן מכפלה פנימית.
* במרחב כל ה[[אינטגרל|פונקציות האינטגרביליות]] בריבוע ב[[אינטגרל לבג|מובן לבג]] בתחום <math>\,I</math>, שמסומן <math>\ L^2(I)</math>, המכפלה הפנימית היא <math> \lang f , g \rang = \int_I{ f(x) \ \overline{g(x)} \ dx } </math>. מכפלה זו הופכת את המרחב ל[[מרחב הילברט]], לפי משפט ריז-פישר.
* ב[[פיזיקה קוונטית]], משתמשים ב[[סימון דיראק]] (מכונה סימון "ברה-קט") לציון המכפלה הפנימית שפירושה הוא הטלת [[מצב קוונטי]] מסוים על מצב אחר. נהוג לקבוע שהיא הומוגנית דווקא ברכיב הימני ולא בשמאלי (בניגוד למוסכמה הנהוגה ב[[מתמטיקה]]): <math>\ \lang a \phi | b \psi \rang = a^* b \lang \phi | \psi \rang</math>. כאשר הכוכבית מסמנת [[צמוד קומפלקסימרוכב]].