הבדלים בין גרסאות בדף "משוואה ממעלה שנייה"

מ
 
==נוסחת השורשים לפתרון משוואה ריבועית==
הפתרונות למשוואה הריבועית <math>\!\, ax^2+bx+c=0</math> הם <math>x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>.
 
את הפתרון מקבלים על ידי '''[[השלמה לריבוע]]''': כפל ב-<math>\ 4a</math> והוספת ה[[דיסקרימיננטה]] <math> \!\, \Delta=b^2-4ac</math> לשני האגפים, מביא את המשוואה לצורה <math>\!\, (2ax+b)^2=\Delta</math>. לאחר [[הוצאת שורש ריבועי]] מתקבלים הפתרונות <math>x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}</math>. אם a קטן, אפשר לשם הדיוק הנומרי להשתמש בנוסחה <math>x_{1,2}=\frac{-2c}{b\pm\sqrt{\Delta}}</math>, המתקבלת מהנוסחה המקורית על ידי הכפלת המונה והמכנה בצמוד. ב[[חישוב נומרי]] אפשר לפתור את המשוואה באמצעות [[שיטת מולר]] {{אנ|Muller's method}}.