הבדלים בין גרסאות בדף "משפטי האי-שלמות של גדל"

קישור לערך ראשי במקום לדף הפניה
(קישור לערך ראשי במקום לדף הפניה)
'''משפט האי-שלמות הראשון של גדל''', שהפך לאבן פינה ב[[לוגיקה מתמטית|לוגיקה המתמטית]], הוסיף אפשרות שלישית לגורל הצפוי לטענה מתמטית. המשפט קובע כי בכל מערכת לוגית מקיפה, ניתן לבנות באמצעות [[אלגוריתם]] טענות שמחד אינן ניתנות להוכחה ומאידך אינן ניתנות להפרכה מתוך אותה קבוצת אקסיומות. הטענות הנבנות דומות מאוד ל[[פרדוקס השקרן]] (פרדוקס שבו אדם מסוים אומר "אני עכשיו משקר"), אך שונות ממנו, שכן לא נטען בהן שהן אינן נכונות. ההוכחה הפורמלית של המשפט מראה בצורה קונסטרוקטיבית כיצד ניתן לבנות טענה פורמלית האומרת "לא ניתן להוכיח אותי".
 
במשך שנים לאחר פרסום המשפטים רווחה ההנחה שאמנם קיימות טענות שלא ניתן להוכיח או להפריך אך הן "לא טבעיות", כלומר לא סביר שבמהלך פיתוח סטנדרטי של תורה מתמטית ניתקל במשפטים כאלו. ההנחה הזו התבררה כשגויה באופן קיצוני בעקבות הוכחת ה[[עצמאות (לוגיקה מתמטית)|עצמאות]] של [[השערת הרצף]]. השערת הרצף שהוצעה על ידי [[גיאורגגאורג קנטור]], טוענת כי לא קיימת קבוצה ש[[עוצמה (מתמטיקה)|עוצמתה]] גדולה מזו של המספרים הטבעיים וקטנה מזו של המספרים הממשיים. השערה זו נחשבה לאחת מהבעיות הפתוחות המרכזיות במתמטיקה בתחילת המאה ה-20 (זו הבעיה הראשונה ברשימת [[23 הבעיות של הילברט]]). בשנת [[1937]] הוכיח גדל כי לא ניתן '''להפריך''' השערה זו במסגרת [[תורת הקבוצות האקסיומטית| אקסיומות ZFC]] ובשנת [[1963]] הוכיח [[פול כהן]] כי לא ניתן '''להוכיח''' השערה זו במסגרת ZFC.
 
ב'''משפט האי-שלמות השני''' הוכיח גדל כי [[תורה (לוגיקה מתמטית)|תורה]] עקבית שהיא מספיק חזקה לקיים את [[אקסיומות פיאנו]] (שהאריתמטיקה הרגילה מכילה אותה) ובפרט כזאת שמקיימת את ה[[תורת הקבוצות האקסיומטית|אקסיומות של תורת הקבוצות (ZF)]] לא יכולה להוכיח את העקביות של עצמה. משמעות הדבר היא שאין אפשרות להוכיח בתוך המערכת כי האקסיומות הן עקביות. מזה נובע שלעולם לא נוכל להיות בטוחים לחלוטין שהמערכת עקבית ולא כוללת סתירות נסתרות{{הערה|מתוך הספר [[משפט גדל (ספר)]] בהוצאת [[הטכניון]], עמ' 5-6}} - כי או שהיא אינה עקבית, או שהיא עקבית אך לא נוכל להוכיח זאת. אולם, האפשרות שאי אפשר להפריך את העקביות של עצמה תלויה במערכת האקסיומות שלה (יכול להיות שטענה זאת בלתי תלויה במערכת האקסיומות שלך ויכול להיות שהיא לא נכונה).