חילוק באפס – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
שורה 11:
לא תמיד חילוק באפס בפונקציה תתן נקודת אי רציפות סליקה. בנקודות בהן הפונקציה היא מהצורה <math>\textstyle \frac{ a}{ 0}</math> או <math>\textstyle \frac{ \infty}{ 0}</math> (כאשר המונה והמכנה מייצגים את ה[[גבול של פונקציה|גבול]] של הפונקציה במונה והפונקציה במכנה בהתאמה; a שונה מאפס) נקודת אי הרציפות תהיה מ[[נקודת אי רציפות|הסוג השני]] והפונקציה תשאף בנקודות אלו לאינסוף. רק במקרה <math>\textstyle \frac{ 0}{ 0}</math>, אז תיתכן כל תוצאה אפשרית לגבול. במקרה כזה שימושי [[כלל לופיטל]].
 
==בתורתב[[תורת החוגים]]==
את הדיון בחילוק באפס ב[[מערכות מספרים|מערכות המספרים]] המקובלות ניתן [[הכללה (מתמטיקה)|להכליל]] למבנים נוספים. הדיון מוגבל למבנים בהם יש איבר הדומה לאפס, ופעולה הדומה לחילוק. איבר אנלוגי לאפס נקרא [[איבר אפס]], והוא דומה לאפס במובן שהוא איבר היחידה ביחס לפעולה הדומה לחיבור. המבנה הפשוט והנפוץ ביותר שיש בו איבר אפס ופעולה דמוית כפל שניתן להגדיר בעזרתה חילוק (ככפל בהופכי, כאשר קיים הופכי) הוא [[חוג (מבנה אלגברי)|חוג]]. ההוכחה כי לכל a <math>\ a\cdot0=0</math> תקפה בכל חוג. בחוג לא [[טריוויאלי]] (יש בו יותר מאיבר אחד) איבר האפס עצמו לא יכול להיות איבר היחידה הכפלי ולכן לא קיים לאיבר האפס הופכי. במקרה של החוג הטריוויאלי, הכולל את איבר האפס בלבד שמתפקד גם כאיבר היחידה הכפלי, חילוק באפס כן מוגדר ומתקיים <math>\textstyle \frac{ 0}{ 0} = 0</math>.