תת-חבורת הקומוטטורים – הבדלי גרסאות

מ
אין תקציר עריכה
מ (בוט החלפות: על ידי;)
מאין תקציר עריכה
ב[[מתמטיקה]] ובמיוחד ב[[אלגברה מופשטת]], '''תת חבורת הקומוטטורים''' <math>\ G'</math> של [[חבורה (מבנה אלגברי)|חבורה]] <math>\ G</math> היא התת-חבורה ה[[יוצרים של חבורה|נוצרת]] על ידי כל ה[[קומוטטור|קומוטטורים]] של אברים בחבורה. תת-חבורת הקומוטטורים מודדת עד כמה החבורה היא [[חבורה אבלית|אבלית]]: היא [[טריוויאלי (מתמטיקה)|טריוויאלית]] אם ורק אם החבורה אבלית, ובאופן כללי יותר, ה[[חבורת מנה|מנה]] <math>\ G/G'</math> היא המנה האבלית הגדולה ביותר של G.
 
==הגדרה==
 
ה[[קומוטטור]] של שני אברים g,h בחבורה G הוא, לפי ההגדרה, האיבר <math>\ [g,h]=ghg^{-1}h^{-1}</math>. תת-חבורת הקומוטטורים של <math>\ G</math> היא החבורה הנוצרת על ידי כל האברים האלה, כלומר, <math>\ \langle [h,g] | h,g \in G \rangle</math>.
 
 
==תכונות==
 
תת-חבורת הקומוטטורים היא ה[[תת חבורה נורמלית|תת-חבורה הנורמלית]] הקטנה ביותר כך ש[[חבורת מנה|חבורת המנה]] <math>\ G/G'</math> היא [[חבורה אבלית|אבלית]]: לכל תת-חבורה נורמלית N של G, המנה <math>\ G/N</math> אבלית אם ורק אם <math>\ G' \subseteq N</math>.
 
 
=== השערת Ore ===
 
ב[[חבורה פשוטה]] שאינה קומוטטיבית, כל איבר שייך לתת-חבורת הקומוטטורים, ולכן הוא מכפלה של קומוטטורים. המתמטיקאי Oystein Ore שיער (ב-[[1951]]) שבחבורה פשוטה סופית, כל איבר הוא קומוטטור (של שני איברים כלשהם בחבורה), והוכיח טענה זו עבור [[חבורת התמורות הזוגיות]] <math>\ A_n</math>. מאוחר יותר הוכיחו את ההשערה לכל [[חבורה מטיפוס לי]] <math>\ L_r(q)</math>, עבור <math>\ q>8</math>. הבעיה עדיין פתוחה עבור חבורות מטיפוס לי מעל [[שדה סופי|שדות]] קטנים.
 
==ראו גם==
* [[קומוטטור]]
* [[חבורה פתירה]]
* [[חבורה נילפוטנטית]]
 
159,349

עריכות