קירוב ליניארי – הבדלי גרסאות

מושג מתמטי
תוכן שנמחק תוכן שנוסף
דף חדש: thumb|300px|הקו המשיק במתמטיקה, '''קירוב לינארי''' או '''קירוב מסדר ראשון''' הוא קירוב של [[...
(אין הבדלים)

גרסה מ־10:10, 31 באוקטובר 2009

במתמטיקה, קירוב לינארי או קירוב מסדר ראשון הוא קירוב של פונקציה מתמטית כלשהי באמצעות פונקציה לינארית (ליתר דיוק, פונקציה אפינית). לקירובים לינארים יש שימוש נרחב במדעים ובמתמטיקה כדי לקבל קירוב לערך הפונקציה בסביבה של ערך קבוע מראש. היות שפונקציות לינאריות הן קלות לחישוב ולפיתרון, קירובים לינארים מועדפים כמעט תמיד בניתוחים אנליטים ונומריים במידה והם מספקים את הדיוק הנדרש.

הקו המשיק

כאשר לפונקציה קיים קירוב לינארי, נאמר שהפונקציה דיפרנציאבילית.

הגדרה

בהינתן פונקציה f על מרחב הממשיים שהיא רציפה וגזירה ושנגזרתה רציפה גם היא בסביבה של a, מתקבל מטור טיילור עבור n=1 כי:

 

כאשר   הוא איבר השארית המייצג את סכום האיברים מסדר גבוה יותר. קירוב לינארי, או קירוב מסדר ראשון, מתקבל על ידי השמטת השארית, כך שמתקבלת הנוסחה:

 

ככל ש-  יהא קרוב יותר ל-  כך שגיאת הקירוב תהא קטנה יותר שכן האיברים של החזקות הגבוהות יותר של   ישאפו מהר יותר לאפס ויהיו זניחים ביחס לאיבר הלינארי ב-  והאיבר הקבוע.

למעשה הנוסחא שלעיל היא בדיוק משוואת המשיק לגרף של הפונקציה   בנקודה  .

ניתן לבצע קירוב לינארי לפונקציות וקטוריות דיפרנציאביליות באופן דומה, כאשר נקודת ההשקה תהא ביעקוביאן של הפונקציה. לדוגמה, בהינתן פונקציה דיפרנציאבילית   על המספרים הממשיים, הקירוב הלינארי של   עבור   קרובים ל-  נתון על ידי הנוסחה:

 

דוגמה

ניתן לחשב קירוב לערך   על ידי קירוב לינארי של הפונקציה  , כלומר לחשב את הקירוב על ידי חישוב הערך  .

  1. אם כן, ראשית עלינו למצוא את הנגזרת הראשונה של הפונקציה:
     
  2. ואז לפי משוואת הקירוב הלינארי:
     
  3. התוצאה המתקבלת, 2.926, קרובה למדי לערך האמיתי של המספר: 2.924. שגיאת הקירוב המוחלטת היא 0.002, ושגיאת הקירוב היחסית היא 0.0684%.

יישומים

ראו גם