משוואה ממעלה שנייה

סוג של משוואה פולינומיאלית
(הופנה מהדף משוואה ממעלה שניה)

משוואה ממעלה שנייה או משוואה ריבועית היא משוואה מהצורה כאשר הם מקדמים בשדה נתון (למשל, המספרים הרציונליים). מבחינה גאומטרית, מציאת הפתרון שקולה למציאת חיתוכי הפרבולה עם הישר .

לרקע היסטורי ראו היסטוריה של פתרון משוואות פולינומיות.

נוסחת השורשים לפתרון משוואה ריבועית עריכה

הפתרונות למשוואה הריבועית   הם  .

את הפתרון מקבלים על ידי השלמה לריבוע: כפל ב-  והוספת הדיסקרימיננט   לשני האגפים, מביא את המשוואה לצורה  . לאחר הוצאת שורש ריבועי מתקבלים הפתרונות  . אם a קטן, אפשר לשם הדיוק הנומרי להשתמש בנוסחה  , המתקבלת מהנוסחה המקורית על ידי הכפלת המונה והמכנה בצמוד. בחישוב נומרי אפשר לפתור את המשוואה באמצעות שיטת מולר.

כאשר מקדמי המשוואה הם ממשיים, מספר הפתרונות הממשיים תלוי בדיסקרימיננטה: אם היא גדולה מאפס, יש שני פתרונות. אם היא שווה לאפס, יש פתרון יחיד (אבל כפול), ואם היא קטנה מאפס, אין פתרון ממשי, אבל יש פתרונות מרוכבים.

משפט ויאטה עריכה

מקרה פרטי של משפט ויאטה, הקרוי על שמו של המתמטיקאי הצרפתי פרנסואה וייט, מציג קשר בין שני שורשיה של משוואה ריבועית. כאשר נתונה המשוואה הריבועית הכללית  

ושורשיה הם  , הרי מתקיים הקשר הבא:

 


 

קל להוכיח קשר זה על בסיס נוסחת השורשים המופיעה לעיל.

משפט ויאטה נותן טכניקה נוספת לפתרון משוואה ריבועית, ובמשוואות פשוטות (כאלה שמקדמיהן הן מספרים שלמים קטנים) הוא מאפשר להגיע אל הפתרון בצורה מיידית.

בנוסחאות אלה אפשר להשתמש גם כדי לבדוק מתי שורשי המשוואה שוני סימן, שווי סימן, חיוביים ושליליים.

התנאים שוני סימן שווי סימן שניהם חיוביים שניהם שליליים
 [1]  
 
 
 
 
 
 
 

קישורים חיצוניים עריכה

הערות שוליים עריכה

  1. ^ אין צורך בתנאי   כי הוא נובע מהתנאי