משפט בלוך

סכימה של גל בלוך במימד אחד (רק החלק הממשי של הגל)
גל בלוך שווה פוטנציאל בשריג סיליקון

משפט בלוך בפיזיקת המצב המוצק מאפיין את פונקציית הגל של חלקיק בפוטנציאל מחזורי, דוגמת אלקטרון הנע בגביש מחזורי. פונקציות גל אלו מכונות פונקציות בלוך.

המשפט קרוי על שם הפיזיקאי פליקס בלוך שפרסם אותו בשנת 1928[1].

למשפט שימושים וחשיבות רבה בפיזיקת המצב המוצק, לדוגמה לגבי מבנה הפסים במתכות.

ניסוח מתמטיעריכה

למשפט מספר ניסוחים שקולים.

ניסוח 1עריכה

נתון המילטוניאן מן הצורה:

 
כאשר   פוטנציאל מחזורי עם מחזוריות של סריג כלשהו, כלומר עבור כל וקטור   בסריג ועבור הזזה סריגית  , מתקיים:  .
אזי, הפונקציות העצמיות של ההמילטוניאן ניתנות לרישום כ:
 
כאשר גם ל-  יש את אותה המחזוריות של הסריג:   לכל   בסריג ולכל הזזה סריגית  .

ניסוח 2עריכה

בהינתן המילטוניאן כנ"ל, קיים וקטור  , כך שהפונקציות העצמיות של ההמילטוניאן מקיימות:

 
לכל הזזה סריגית  .

הוכחהעריכה

כיוון שהפוטנציאל אינווריאנטי להזזה בווקטור סריג, ההמילטוניאן חילופי עם אופרטורי הזזה בווקטור סריג, המוגדרים על ידי:  . כמו כן אופרטורי ההזזה הנ"ל חילופיים זה עם זה. לפיכך ניתן למצוא פונקציות עצמיות משותפות להמילטוניאן ולאופרטורי ההזזה. כלומר, ניתן לבחור את הפונקציות העצמיות של ההמילטוניאן כך שיקיימו:

 
כיוון שהזזה ב-  ואחריה הזזה ב-  שקולה להזזה ב- , מתקיים:
 
ומכאן ש:  . הפונקציה היחידה בעלת תכונה זו היא אקספוננט, ולכן:  . לסיום:
 
וזה הניסוח השני של המשפט.

בנוסף להוכחה שהוצגה כאן, קיימות הוכחות אחרות, בהן בונים באופן מפורש את הפונקציות העצמיות.

לקריאה נוספתעריכה

  • Felix Bloch, "Über die Quantenmechanik der Elektronen in Kristallgittern," Z. Physik 52, 555-600 (1928).
  • Ashcroft and Mermin, Solid state physics (chapter 8)

הערות שולייםעריכה

  1. ^ יש לציין כי תכונות דומות של פתרונות של משוואות דיפרנציאליות היו ידועות בתקופה מוקדמת יותר