מתאם פי

מקדם הקשר (או המתאם) (פי) הוא מדד תיאורי לעוצמת הקשר בין שני משתנים איכותיים (כשבדרך כלל שניהם נמדדים בסולם מדידה שמי). המדד מבוסס על סטטיסטי כי בריבוע של פירסון, אולם יש לו קשר גם למקדם המתאם של פירסון.

היסטוריהעריכה

מקדם קשר זה הוצע על ידי ג'ורג' אדני יול ב-1912 עבור 2 משתנים איכותיים דיכוטומיים.[1] קרל פירסון הציע באופן בלתי תלוי לאמוד את עצמת הקשר בין שני משתנים דיכוטומיים המקבלים את הערכים 0 ו-1 על ידי חישוב מקדם המתאם כאשר מתייחסים למשתנים כאל משתנים כמותיים. התברר כי שתי ההגדרות שקולות, וכי שתיהן קשורות גם לסטטיסטי מבחן כי בריבוע לבדיקת השערת אי התלות בין המשתנים. ההרחבה פורמלית של מקדם   למדידת עצמת הקשר בין שני משתנים איכותיים כלשהם נעשתה על ידי הראלד קראמר[2].

הגדרהעריכה

יהיו   ו-  שני משתנים מקריים איכותיים, ויהי   סטטיסטי כי בריבוע לבדיקת השערת אי התלות בין המשתנים על סמך מדגם בגודל  . אזי  .

ערכו של   שווה ל-0 אם ורק אם שני המשתנים הם בלתי תלויים. ככל שערכו של   גדול יותר כך עצמת הקשר גדולה יותר. בדרך כלל ערכו של   קטן מ-1, אם כי ניתן למצוא דוגמאות בהן ערכו גדול מ-1. עם זאת, כאשר   ו-  הם משתנים דיכוטומיים, ערכו של   אינו יכול לעלות על 1.

ניתן לבדוק השערות על ערכו של   ולחשב רווחי סמך תוך שימוש בהתפלגות כי בריבוע.

מקרים פרטייםעריכה

כאשר   ו-  הם משתנים דיכוטומיים (כלומר כל אחד מהם מקבל שני ערכים בלבד), ניתן להציג את נתוני המדגם בלוח השכיחות הבא:

Total    
       
       
      Total


כאשר  .

במקרה זה:

 .

זוהי למעשה ההגדרה שנתן יול[3].

אם   ו-  הם משתנים דיכוטומיים, ערכו של   שווה לערכו של מתאם קרמר.

אם   ו-  מקבלים את הערכים 0 ו-1, אזי   שווה לערכו של מקדם המתאם של פירסון המחושב כאשר מתייחסים למשתנים כאל משתנים כמותיים.

ראו גםעריכה

קישורים חיצונייםעריכה

הערות שולייםעריכה

  1. ^ Yule, G. U., On the methods of measuring association between two attributes, Journal of the Royal Statistical Society, 6 75, 1912, עמ' 579-652 doi: 10.2307/2340126
  2. ^ Cramer, H., Mathematical Methods of Statistics, Princeton: Princeton University Press, 1946, מסת"ב 0-691-08004-6
  3. ^ Samuel Kotz and N. Balakrishnan, Encyclopedia of Statistical Sciences, Wiley-Interscience, 2006, עמ' 41, מסת"ב 978-0471743804