שורש ריבועי

אורך צלע של ריבוע ששטחו a

שורש ריבועי של מספר a כלשהו הוא מספר, שאם מכפילים אותו בעצמו מקבלים את a. הפעולה החישובית של מציאת השורש הריבועי נקראת הוצאת שורש ריבועי. מכל השורשים, השורש הריבועי נקרא דווקא כך בגלל משמעותו הגאומטרית: אם a הוא שטחו של ריבוע, אז אורך צלעו של הריבוע שווה לשורש הריבועי של a. כאשר ההקשר ברור, השורש הריבועי מכונה לעיתים גם שורש.

גרף המייצג .

למספר חיובי יש שני שורשים ריבועיים ממשיים, חיובי ושלילי. למשל, למספר 100 יש את השורשים פלוס 10 ומינוס 10, אשר כל אחד בריבוע מחזיר 100. עם זאת, כאשר מדובר על השורש הריבועי של מספר, מקובל כי סמל השורש הוא בדרך כלל חיובי בלבד (Principal square root). השורש הריבועי החיובי מסומן כך: . אולם, למשוואה יש שני פתרונות: ו-.

למספרים ממשיים שליליים אין שורש ריבועי ממשי (מכיוון שכל מספר ממשי שמוכפל בעצמו נותן תוצאה אי שלילית, בין אם הוא שלילי ובין אם הוא חיובי). המספרים המרוכבים פותחו בין היתר על מנת לתת מענה לבעיה זו: במספרים המרוכבים יש שני שורשים ריבועיים לכל מספר (ממשי או מרוכב).

תכונות עריכה

השורש הממשי עריכה

הפונקציה  , שנקראת פונקציית השורש (הריבועי), היא פונקציה חד-חד-ערכית ועל מהמספרים הממשיים האי-שליליים לעצמם. פונקציה זו היא רציפה בכל מקום שבו היא מוגדרת, וגזירה עבור כל מספר חיובי. בנקודה   פונקציית השורש לא גזירה (גם לא באופן חד-צדדי), והנגזרת שלה שואפת לאינסוף, כאשר המשתנה שואף לאפס.
פונקציית השורש משמרת את פעולת הכפל ואת פעולת החילוק, כלומר:

  לכל  
  לכל  

לעומת זאת, פונקציית השורש בדרך כלל לא משמרת חיבור, כלומר:

 

קל לראות ששוויון מתקבל אם ורק אם   כלומר אחד המספרים, או שניהם הוא אפס.

השורש המרוכב עריכה

במספרים המרוכבים, לכל מספר יש שני שורשים. בניגוד למספרים הממשיים, במישור המרוכב אין דרך להגדיר מספר חיובי ולכן לא ניתן להחזיר תמיד את "השורש החיובי" כמו שאפשר לעשות במספרים הממשיים, ולכן הבחירה איזה שורש מהשורשים מיוצג בפונקציה היא שרירותית. ההגדרה המקובלת לפונקציית השורש במספרים המרוכבים היא באמצעות פונקציות האקספוננט והלוגריתם הטבעי המרוכבות, בהתאם להגדרת החזקה המרוכבת:

 

הגדרה זו למעשה מעבירה את נקודת ההחלטה לבחירת הענף של הלוגריתם, כאשר שינוי הענף יוסיף   למעריך החזקה ולכן יכפיל את השורש ב 1-.

במספרים המרוכבים, פונקציית השורש לא רציפה בכל המישור, כיוון שפונקציית הלוגריתם איננה רציפה. מהסיבה הזו הנוסחאות הרגילות של מכפלת שורשים ומנת שורשים לא בהכרח מתקיימות. לדוגמה:

 

פיתוח לטור טיילור עריכה

נוסחת הבינום של ניוטון נותנת את טור טיילור  , המתכנס עבור  .

ראו גם עריכה

קישורים חיצוניים עריכה

  מדיה וקבצים בנושא שורש ריבועי בוויקישיתוף