אם הוא משחק שיתופי עם n שחקנים, וקטור תשלומים (imputation) הוא וקטור המקיים:
יעילות: . זה בא לציין שכל הרווח מתחלק בין השחקנים, ללא עודף.
סבירות פרטית: לכל שחקן . זה בא לציין שלכל שחקן כדאי להצטרף לקואליציית כל השחקנים, כי בה הוא ירוויח לפחות את מה שהוא יכול להרוויח לבדו.
קבוצת וקטורי התשלומים מסומנת ב-.
וקטור תשלומים הוא בליבה אם הוא מקיים בנוסף:
סבירות קואליציונית: לכל קואליציה . זה בא לציין שלכל קואליציה חלקית לקואליציה של כל השחקנים כדאי להשתתף בקואליציה של כל השחקנים, כי סך הרווחים שלהם בה יהיה גדול לפחות כמו זה שישיגו אם ילכו לבדם. לעיתים מסמנים .
במשחק הוצאות, הדרישות משתנות קמעה - תשלומי הצד משולמים על ידי השחקנים (ולא משולמים להם), ולכן כל שחקן רוצה למזער את הסכום שהוא צריך לשלם. לכן, אי השוויונים מתהפכים:
לכל קואליציה , הקבוצה היא קבוצה סגורה וקמורה. הליבה היא חיתוך של קבוצות מהצורה הזו, ושל הקבוצה שגם היא סגורה וקמורה, ולכן גם הליבה היא קבוצה סגורה וקמורה.
ניתן לראות כי מתכונות היעילות והסבירות הפרטית, נובע שלכל וקטור x בליבה, כל הקואורדינטות של x חסומות על ידי הערך , ולכן היא קבוצה קומפקטית.
לא לכל משחק יש וקטור שעונה על הדרישות של הליבה, ועל כן לפעמים הליבה של המשחק ריקה, כפי שניתן לראות בדוגמה בהמשך. לעיתים יש וקטורים רבים שעונים על התנאים הללו. קיימים סוגים מסוימים של משחקים שיתופיים בהם ניתן להראות כי תמיד הליבה אינה ריקה, כגון משחק שוק או משחק קמור.
תנאי כללי שהוא תנאי הכרחי ומספיק לאי-ריקות הליבה נוסח במשפט בונדרבה-שפלי.
השחקנים החליטו לחלק את שווי הקואליציה הגדולה, 3, על פי וקטור זה ושחקן 3 עזב עם חלקו 0.5.
כעת, שחקנים 1 ו-2 מסתכלים על החלוקה של 2.5 ותוהים האם החלוקה המקורית (לפני העזיבה של השחקן השלישי) טובה גם עכשו, אחרי העזיבה.
ניתן להגדיר משחק חדש זה כמשחק המצומצם לפי דייוויס ומשלר.
השחקנים יכולים להגדיר משחק בצורה קואליציונית שבו משתתפים רק 2 השחקנים שנשארו, זהו בעצם המשחק המצומצם, ולבדוק האם הפתרון במשחק הזה זהה לסכום שכל אחד מהם היה מקבל במשחק המקורי.
אם הפתרון זהה לכל משחק בצורה קואליציונית ולכל קבוצה של שחקנים שתעזוב את המשחק, נאמר שמושג הפתרון מקיים את תכונת העקביות. ולאחר שהשחקנים יבחנו את המשחק המצומצם, שום קבוצה שלהם לא תהיה מעוניינת לסטות מהפתרון המקורי משום שאם יסטו לא ירוויחו מלהימצא בפתרון של המשחק המצומצם שכן יקבלו בדיוק אותו הסכום כמו בפתרון המקורי.