באלגברה, מודול יוצר (generator module) הוא מודול בו סכומי פונקציונלים מהמרחב הדואלי יוצרים את כל חוג הבסיס. מודול פרו-יוצר (progenerator module) הוא מודל יוצר, פרויקטיבי ונוצר סופית. למודולים המקיימים תכונות אלו תפקיד מבני בתורת המודולים, והם מהווים עזר באפיון מושגים שונים באלגברה: בעזרתם ניתן לאפיין באופן מבני את שקילות מוריטה; הם מהווים חלק מהגדרת איברים טריוויאליים בחבורת בראואר של חוגים.

הגדרה

עריכה

יהי   חוג, ויהי   מודול מעל החוג. נסמן ב-  את ההמרחב הדואלי של  , כלומר אוסף ההומומורפיזם מהמודול אל חוג הבסיס. אידיאל העקבה (trace ideal) של   מוגדר כך:

 

כלומר, הוא מכיל סכומי פעולות של פונקציונלים על החוג. בדיקה ישירה מראה שזהו אכן אידיאל דו צדדי של   (נובע בין השאר מכך ש-  מודול ימני מעל  ). המודול   נקרא יוצר יוצר אם אידיאל זה שווה לכל החוג:   (או בשקילות,  ). המודול נקרא פרו-יוצר אם הוא בנוסף פרויקטיבי ונוצר סופית מעל  .

תכונות

עריכה

להלן מספר תכונות שקולות להיותו של מודול יוצר:

  1. הפונקטור   הוא נאמן. בפרט, נובע שהתכונה ניתנת לאפיון באופן קטגורי, ולכן נשמרת בין אובייקטים שקולים קטגורית.
  2.   הוא מחובר ישר ב- .
  3.   הוא מחובר ישר ב- .
  4. כל  -מודול הוא תמונה של ב- .

אזומיה הוכיח כי מודול מעל חוג קומוטטיבי שהוא פרויקטיבי ונוצר סופית הוא יוצר (ולכן פרו-יוצר) אם ורק אם הוא נאמן. בפרט, נובע כי כאשר חוג הבסיס קומוטטיבי ואין לא אידמפוטנטים פרט ל-0 ו-1, כל מודול פרויקטיבי ונוצר סופית הוא פרו-יוצר. בנוסף, עבור מודול פרויקטיבי ונוצר סופית מתקיים  , כאשר   הוא המאפס של המודול.

שקילות מוריטה

עריכה
  ערך מורחב – שקילות מוריטה

למודולים יוצרים ישנו קשר חשוב לשקילות מוריטה של חוגים - שני חוגים הם שקולים מוריטה אם ורק אם יש שקילות קטגורית בין המודולים הימניים שלהם. מסתבר שתנאי זה שקול לתנאי מבני על החוגים - משפטי מוריטה קובעים כי חוגים הם שקולים מוריטה אם ורק אם אחד מהם הוא חוג אנדומורפיזמים מעל מודול פרו-יוצר של השני. שקילות זו מוכחת על ידי בניית Morita context לכל מודול פרו-יוצר.

ראו גם

עריכה

לקריאה נוספת

עריכה
  • T. Lam, Lectures on Modules and Rings, 1998
  • Demeyer and Ingraham, Separable Algebras over Commutative Rings, 1970.