הבדלים בין גרסאות בדף "רציפות (פילוסופיה)"

הסבר למדוע מושג הגבול המתמטי אינו יוצר קשיים לוגיים.
(הסבר למדוע מושג הגבול המתמטי אינו יוצר קשיים לוגיים.)
הקושי הלוגי שהתעורר בחשבון האינפיניטסימלי גרם למתמטיקאים לעבור מעיסוק בגאומטריה לעיסוק בהגדרות לוגיות ובתורת המספרים.<br />
הפתרון העיקרי שניתן בתחום החשבון האינפיניטסימלי היה החלפת המושג "גודל קטן עד אין סוף" במושג [[גבול (מתמטיקה)|גבול]]. מושג הגבול מביע את הרעיון המופיע במושג "גודל קטן עד אין סוף", אולם ניסוחו המתמטי אינו יוצר קשיים לוגיים, מפני שהגבול שם נקודת גבול לאינסוף המתכנס ובכך שם סוג של סוף (גבול) לאינסוף, או במילים אחרות, הופך את הרציפות לדבר המורכב מאובייקטים בדידים קטנים כרצוננו אך סופיים (אפסילון).
 
הפתרון העיקרי שניתן להגדרת המספרים האירציונליים, היה פיתוחה של [[תורת הקבוצות]]. [[גיאורג קנטור|קנטור]] פיתח מושגים ושיטות שבהן אין "תהליך אינסופי" (אינסוף פוטנציאלי) אלא [[קבוצה אינסופית|קבוצות אינסופיות]] (אינסוף אקטואלי). בצורה זו ניתן להגדיר בכלים סופיים מהו מספר אירציונלי.
משתמש אלמוני