מרחב פרשה-אוריסון

בטופולוגיה, מרחב פרשה-אוריסון הוא מרחב טופולוגי בו הסגור הסדרתי מתלכד עם הסגור הטופולוגי. המרחב קרוי על שמם של שניים ממפתחי הטופולוגיה, פאבל סמואילוביץ' אוריסון ו-Maurice Fréchet.

הגדרה פורמליתעריכה

יהי   מרחב טופולוגי. נאמר ש-  הוא מרחב פרשה-אוריסון אם לכל תת קבוצה   מתקיים  , כאשר   הוא הסגור הטופולוגי ו-  הוא הסגור הסדרתי.

דוגמאותעריכה

  • כל מרחב מטרי הוא מרחב פרשה-אוריסון.
  • כל מרחב המקיים את אקסיומת המנייה הראשונה הוא גם מרחב פרשה אוריסון.
  • במרחב פרשה אוריסון, רציפות פונקציות שקולה לעקרון היינה, כלומר - פונקציה ממרחב פרשה אוריסון היא רציפה אם ורק אם היא שומרת על התכנסות סדרות. תוצאה זו איננה נכונה במרחב כללי (המרחב בסעיף הבא הוא דוגמה לכך).
  • דוגמה למרחב שאינו פרשה אוריסון - נביט במרחב   כאשר  , עם הטופולוגיה  . במרחב זה מתקיים  .

מרחבים סגורים סדרתיתעריכה

מרחב הוא סגור סדרתית אם כל תת-קבוצה סגורה סדרתית שלו, היא סגורה. מרחב הוא פרשה-אוריסון אם ורק אם כל תת-מרחב שלו הוא סגור סדרתית. בפרט, מרחבי פרשה-אוריסון הם סגורים סדרתית; ההפך אינו נכון.

ראו גםעריכה