קונבולוציה

אופרטור בינארי מתמטי
(הופנה מהדף משפט הקונבולוציה)
יש לפשט ערך זה: הערך מנוסח באופן טכני מדי, וקשה להבנה לקהל הרחב.
יש להוסיף מבוא אינטואיטיבי שיסביר את הרעיונות והמושגים בצורה פשוטה יותר, רצוי בליווי דוגמאות ותוך שימוש באמצעים אינפוגרפיים. אם אתם סבורים כי הערך איננו ברור דיו או שיש נקודה שאינכם מבינים בו, ציינו זאת בדף השיחה שלו. יש לציין כי ערכים מדעיים רבים מצריכים רקע מוקדם.

קונבולוציה (או קיפול[1]) היא פעולה בינארית בין שתי פונקציות או סדרות ערכים, שיש לה שימושים בהתמרות אינטגרליות כדוגמת התמרת פורייה, בהתמרת לפלס, בעיבוד אותות, בסטטיסטיקה ובתחומים נוספים במתמטיקה, פיזיקה והנדסה. מקובל לסמן את הקונבולוציה בסימון . פעולת הקונבולוציה ממזגת את שתי הפונקציות או הסדרות באופן דומה לקרוס-קורלציה (או מתאם צולב)[2].

קונבולוציה מאפשרת, במקרים מסוימים, מידול של תופעה מורכבת כשתי תופעות פשוטות בהרבה, כאשר התוצאה הסופית היא קונבולוציה של הפתרונות הפשוטים בנפרד. משתמשים בקונבולוציה ככלי עזר לתאר באופן מתמטי תופעות מורכבות רבות, במתמטיקה, בכל תחומי המדע, ובטכנולוגיה.

הגדרה

עריכה
 
המשמעות הגרפית של קונבולוציה

קונבולוציה של פונקציות

עריכה

הקונבולוציה   בין שתי הפונקציות   ו-  גם היא פונקציה של   והיא מוגדרת כך:

 

הקונבולוציה בין הסדרות הבדידות   ו-  מוגדרת:

 

הקונבולוציה היא סך השטח הכלוא מתחת למכפלת שתי הפונקציות כאשר אחת מהן משוקפת סביב הציר האנכי ומוזזת ב-t. המשתנה t לאו דווקא מסמל זמן, ובתחומים שונים הפונקציות הן של משתנים שונים. ניתן להתייחס לקונבולוציה כממוצע נע משוקלל: (f(t היא הממוצע של הפונקציה (g(τ לפי פונקציית המשקל (h(-τ המוזזת ב-t (או המשתנה עם הזמן).

קונבולוציה של סדרות

עריכה

הקונבולוציה של הסדרות   ו-  היא הסדרה  . בדומה לזה מוגדרת קונבולוציה של טורים כטור המתאים לקונבולוציה של הסדרות המתאימות. לפי משפט קושי (תורת הטורים), הקונבולוציה של טורים המתכנסים בהחלט מתכנסת בהחלט.

קונבולוציה מעגלית

עריכה
  ערך מורחב – קונבולוציה מעגלית

אם הפונקציה   היא מחזורית עם מחזור  , כך שניתן לכתוב אותה כסכום:

 ,

אז הקונבולוציה של   עם פונקציה  , שאינה מחזורית, גם היא פונקציה מחזורית עם מחזור  , וניתן לכתוב אותה כך:

 

ניתן לראות זאת כסכימה של השטח מתחת למכפלת מחזור אחד של   בהזזות של הפונקציה  , במקום סכימה של השטח מתחת למכפלה של הזזות של מחזור אחד של הפונקציה   בפונקציה  .

  נקראת הקונבולוציה המעגלית או הקונבולוציה הציקלית של   ו- . כלומר, קונבולוציה מעגלית של שתי פונקציות שאינן מחזוריות היא קונבולוציה רגילה בין הפונקציה האחת לבין פונקציה מחזורית שהמחזור שלה זהה לקטע מן הפונקציה השנייה.

אם נגדיר פונקציה מחזורית   כפונקציה שהמחזור שלה זהה לקטע מהפונקציה  :

 

אז ניתן לכתוב את הפונקציה   כך:

 

והיא נקראת הקונבולוציה המחזורית של   ו- . כלומר, הקונבולוציה המחזורית של שתי פונקציות מחזוריות עם מחזור זהה   דומה לקונבולוציה רגילה, אלא שהאינטגרציה נעשית על פני זמן באורך של מחזור אחד  , כאשר   הוא שרירותי.

אינטואיציה

עריכה

לשם המחשת המושג ניקח דוגמה מתחום האקוסטיקה. נניח שאנו נמצאים בחדר אשר מחזיר הד עבור קולות הנשמעים בו. אם נשמיע קול בחדר זה ההד יתנהג בצורה הבאה: לאחר שנייה אחת עוצמת הקול שנשמעת היא חצי מהקול המקורי, לאחר שתי שניות היא רבע ממנו, וכן הלאה. ובאופן כללי:   (כאשר h היא ההגבר). נניח כי מוצב תוף בחדר ואדם מכה בו כל שנייה בעוצמה אחרת, ו־  היא הסדרה המייצגת את עוצמת המכה בכל שנייה. אם אנחנו מעוניינים לדעת לאחר זמן מסוים מה תהיה עוצמת הקול בחדר, עלינו לסכום את התרומות של כל הקולות שנעשו מאז תחילת התיפוף ועד הזמן שאנחנו מעוניינים בו. הבעיה היא שעבור כל מכה בתוף עבר זמן שונה ונצטרך להתחשב בו. הדרך לחשב זאת היא לחבר את העוצמה שנשמעה ברגע זה עם חצי העוצמה שנשמעה בשנייה הקודמת עם רבע מהעוצמה שנשמעה בשנייה שלפני כן וכן הלאה עד לתחילת התיפוף, כלומר:  ביטוי זה שקיבלנו הוא הקונבולוציה בזמן בדיד אך אפשר בקלות לקבל ביטוי דומה עבור זמן רציף.

תכונות

עריכה

הקונבולוציה אסוציאטיבית וקומוטטיבית, ודיסטריבוטיבית ביחס לחיבור. לכן היא הופכת את מרחבי הפונקציות שבהן היא מוגדרת לאלגברה קומוטטיבית. הסגירות ביחס לפעולת הקונבולוציה תלויה באוסף הפונקציות: הקונבולוציה של פונקציות רציפות היא רציפה; הקונבולוציה של פונקציות אינטגרביליות היא אינטגרבילית. הדלתא של דיראק, שאינה פונקציה, משמשת כאיבר יחידה:  .

הנגזרת של קונבולוציה מקיימת:  

משפט הקונבולוציה

עריכה

משפט הקונבולוציה קובע שהתמרת פורייה של קונבולוציה בין שתי פונקציות היא מכפלת ההתמרות שלהן:  , כאשר   מסמלת הפעלת התמרת פורייה והקבוע   משתנה בהתאם לנרמול ההתמרה.

המשוואה ההפוכה היא:  .

כמו כן, ניתן לכתוב:  . משפט הקונבולוציה שימושי מאוד משום שהפעלת מכפלה (אף לאחר חישוב התמרות פורייה) מסובכת הרבה פחות מאשר חישוב הקונבולוציה לפי הגדרתה, וכך היא מחושבת באופן נומרי. משפטים מקבילים קיימים עבור התמרת לפלס והתמרת Z.

שימושים

עריכה

ראו גם

עריכה

קישורים חיצוניים

עריכה

הערות שוליים

עריכה