שורש (של פונקציה)

מתמטיקה, איבר בתחום ההגדרה שעבורו ערך הפונקציה הוא 0
(הופנה מהדף שורש של פולינום)

שורש של פונקציה הוא איבר בתחום ההגדרה שעבורו ערך הפונקציה הוא 0. שורשים של פונקציה נקראים גם אפסים של הפונקציה או פתרונות של הפונקציה.

למשל עבור הפונקציה הצבת תחזיר , ולכן הוא שורש של הפונקציה.

כפועל יוצא מההגדרה, שורש של פונקציה הוא ה-x שעבורו נחתך גרף הפונקציה עם ציר ה-x. כך למשל נקודות החיתוך של הפונקציה עם ציר ה-x הן כששיעורי ה-x הם 2 ו-2-.

בעיית מציאת השורשים של פונקציות באופן נומרי היא כר פורה למחקר מתמטי. שיטות בסיסיות בענף כוללות את שיטת החצייה ושיטת ניוטון-רפסון, שהיא שיטה איטרטיבית למציאת שורשים בעזרת נגזרות.

שורש של פולינוםעריכה

עבור משוואה ממעלה ראשונה,  . הפתרון הוא הנקודה  .

עבור משוואה ממעלה שנייה,  , הפתרון הוא  .

קיימות נוסחאות גם למשוואות ממעלה שלישית ורביעית. אולם, אווריסט גלואה הוכיח כי אין פתרון באמצעות רדיקלים למשוואה ממעלה חמישית ומעלה.

המשפט הקטן של בזו קובע כי a הוא שורש של פולינום  , אם ורק אם הפולינום ‎  מחלק את  . החזקה המקסימלית שבה מחלק x-a את הפולינום נקראת הריבוי (האלגברי) של השורש.

המשפט היסודי של האלגברה קובע ששדה המספרים המרוכבים הוא סגור אלגברית, כלומר שלכל פולינום ממעלה n במקדמים מרוכבים, יש בדיוק n שורשים כולל ריבוי.

קישורים חיצונייםעריכה

  ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.