שקילות (לוגיקה)

שתי טענות ייקראו שקולות, אם בכל תנאי אמת שאחת מהן אמיתית בו, גם השנייה אמיתית, ולהפך. כלומר, כל אחת מהן מהווה תנאי מספיק ותנאי הכרחי לאמיתות השנייה. או בניסוח מתמטי, A אמיתי אם ורק אם B אמיתי.

סימוןעריכה

בהוכחות מתמטיות נוהגים לסמן שקילות בין שתי טענות כך:  . בניסוח הפורמלי יותר, הנהוג בתחשיב הפסוקים ובתחשיב הפרדיקטים, מסמנים שקילות בין שני פסוקים או תבניות כך:   .

הגדרות מקבילותעריכה

שקילות בין שתי טענות נובעת מקיום שני התנאים הבאים:

  • טענה א' גוררת את טענה ב'.
  • טענה ב' גוררת את טענה א'.

ולכן קיומם במקביל של שני תנאים אלו משמש לעיתים כהגדרה אלטרנטיבית לשקילות בין שתי טענות.

זוג תנאים נוסף שקיומו מצביע על שקילות של טענות הוא:

  • טענה א' גוררת את טענה ב'.
  • שלילת טענה א' גוררת את שלילת טענה ב'.

דוגמאותעריכה

להגדרה הראשונהעריכה

  • אם מספר הוא זוגי אז הוא מתחלק ב־2.
  • אם מספר מתחלק ב־2 – אז הוא זוגי.

מסקנה: זוגיות של מספר שקולה להתחלקותו ב־2.

להגדרה השנייהעריכה

  • אם מספר הוא זוגי אז הוא מתחלק ב־2.
  • אם מספר אינו זוגי – אז הוא לא מתחלק ב־2.

מסקנה: זוגיות של מספר שקולה להתחלקותו ב־2.

תכונות של טענות שקולותעריכה

  • אם שתי טענות הן שקולות – גם השלילות של שתי הטענות תהיינה שקולות.
  • אם טענה א' שקולה לטענה ב' וטענה ב' שקולה לטענה ג' הרי שטענה א' שקולה לטענה ג' (טרנזיטיביות)

ראו גםעריכה

קישורים חיצונייםעריכה

  מדיה וקבצים בנושא שקילות בוויקישיתוף