פתיחת התפריט הראשי

שרשרת פולימרית גאוסיאנית

שרשרת פולימרית גאוסיאניתאנגלית: Gaussian Polymer Chain) היא שרשרת בה אורך הווקטור המחבר בין מונומרים סמוכים מתפלג גאוסיאנית. פונקציית התפלגות ההסתברות של השרשרת כולה להיות בקונפורמציה מסוימת נקבעת על ידי מכפלת פונקציות ההתפלגות של כל וקטורי הקשר בשרשרת.
מודל השרשרת הגאוסיאנית מתאר את השרשרת הפולימרית כרצף של חלקיקים ספריים המחוברים ביניהם על ידי מוטות קשיחים או קפיצים. חיבורים אלו מכונים "וקטורי הקשר".

פולימר גמיש יכול להיות באחת מיני קונפורמציות רבות אפשריות. הקונפורמציה היא הסידור המרחבי האפשרי של הפולימר הנקבע על ידי סט של וקטורי קשר המחברים אטומים שכנים.
הקונפורמציה הספיציפית של הפולימר נקבעת על ידי שלושה מאפיינים: גמישות השרשרת, אינטראקציות בין מונומרים על גבי השרשרת ואינטראקציות עם הסביבה. בין המונומרים לאורך השרשרת יכולות להיות אינטראקציות דוחות או מושכות. מספר הקונפורמציות האפשריות עבור פולימר גמיש הוא כה רב כך שמועיל יותר לתאר את צורת הפולימר באמצעות כלים סטטיסטים.

תיאור של שרשרת אידיאלית. האטומים מיוצגים ככדורים (מסומנים באדום) והקשרים ביניהם מיוצגים על ידי מוטות קשיחים (מסומנים בכחול). הווקטור המצביע מאטום אחד לאטום שכן הוא "וקטור קשר" אשר לו הסתברות שווה להצביע לכל כיוון במרחב.

מודל השרשרת הגאוסיאנית נמצא בשימוש נרחב בתיאור קונפורמציות ותנועה של שרשראות בודדות באופן תאורטי. כמו כן, מודל זה יעיל בתיאור תנועה קולקטיבית של מערכות בהן יש שרשראות רבות[1].

מודלים לתיאור שרשראות פולימריותעריכה

מודלים עבור שרשראות פולימריות מתחלקים לשתי קבוצות: מודלים המתארים שרשראות אידיאליות (Ideal chains) ומודלים המתארים שרשראות אמיתיות. שרשראות אידיאליות הן שרשראות הממודלות תחת ההנחה כי בין המונומרים לא קיימת אינטראקציה בעוד שעבור שרשראות אמיתיות מתבצעת אינטראקציה בין המונומרים ובין השרשרת לבין התמיסה בה היא מצויה. חוזק אינטראקציה זו הוא שקובע האם באופן אפקטיבי קיימת דחייה או משיכה בין המונומרים.

וקטור קצה-קצהעריכה

 
וקטור קצה-קצה המחבר בין קצות הפולימר.

וקטור קצה-קצה   הוא הווקטור המחבר בין קצות הפולימר:   כאשר   הוא "וקטור הקשר" המחבר בין האטום ה-   לאטום ה-  .

במקרה של שרשרת אידיאלית מניחים שגודלו של וקטור הקשר קבוע:  . לשרשראות שונות יהיו וקטורי קשר שונים ולכן וקטורי קצה-קצה שונים. המודל הכללי והפשוט ביותר של שרשרת אידיאלית, Freely Joint Chain, מניח כי כל אחד מן הקשרים הוא בלתי תלוי בשכניו כך שיש לוקטור המתאר אותו הסתברות שווה להצביע לכל כיוון במרחב. תחת הנחה זו, משיקולי סימטריה מרחבית, מתחייב כי הממוצע על גבי הצבר (Ensemble average), שהוא הממוצע על גבי כל המצבים האפשריים של המערכת, מתאפס:  .


אולם, שורש ממוצע הריבועים   של וקטור הקצה-קצה אינו מתאפס:

 

  היא הזווית בין המונומר ה-   למונומר ה- .

  מחושב באופן שונה עבור כל אחד מן המודלים השונים המתארים שרשרשת אידיאלית ולכן שורש ממוצע הריבועים מקבל ערך שונה עבור כל אחד ממודלים אלו.

פיתוח מתמטי של ההתפלגות הסטטיסטית של וקטור הקצה-קצהעריכה

ההסתברות של וקטור קצה-קצה של שרשרת פולימרית בעלת   קישוריות (וקטורי קשר) להיות באורך   נתונה על ידי פונקציית התפלגות ההסתברות  :

 

  היא פונקציית ההתפלגות של פולימר להיות בקונפורמציה מסוימת. כיוון שווקטורי הקשר בלתי תלויים זה בזה, ניתן לכתוב את   כמכפלה:   .   מבטא את גודלו הקבוע של וקטור הקשר   כך ש-   תחת הנרמול  .

על ידי שימוש בטרנספורם פורייה הפוך של פונקציית הדלתא של דיראק, ניתן לשכתב את   באופן הבא:

 


ניתן לבחור את מערכת הצירים כך ש-   ועל ידי בחירה זו מתקבל  


עבור המקרה בו אנו דנים, כאשר  ,   אלא אם  .

כאשר   ניתן להשתמש בקירוב טיילור לקבלת:

 

כך ש-   ועל ידי השלמה לריבוע האינטגרל על   הופך לאינטגרל גאוסיאני פשוט שמניב את התוצאה:

 

כך שפונקציית ההתפלגות של וקטור הקצה-קצה היא גאוסיאן. אף על פי שתוצאה זו התקבלה עבור מודל Freely Joint Chain, היא תקפה עבור מקרה כללי יותר.

פונקציית התפלגות זו עלולה לתאר מצב לא פיזיקלי בו מתקיים שגודלו של   גדול יותר מאורך השרשרת המקסימלי כאשר היא מתוחה לחלוטין, כלומר  . כאשר עוסקים בתיאור פולימר על ידי המודלים הפיזיקליים הפשוטים ביותר, ניתן להניח כי הפולימר אינו במקסימום מתיחה אפשרית כך שזהו תיאור מספק.

באופן כללי, ניתן להראות כי מתקבלת תוצאה זהה עבור התפלגותו של וקטור הקצה-קצה בהינתן   וכאשר השרשרת ארוכה  . תוצאה זו מתקבלת על ידי משפט הגבול המרכזי.

מודל השרשרת הגאוסיאניתעריכה

שרשרת גאוסיאנית היא שרשרת שאורך קשר שלה מתפלג גאוסיאנית:   כאשר  .

באמצעות הכפלת ההתפלגויות של כל אחד מוקטורי הקשר ניתן לקבל את פונקציית התפלגות ההסתברות של הקונפורמציות של השרשרת כולה:

 

שרשרת גאוסיאנית אינה מתארת באופן מדויק מבנה מקומי של פולימר אך מתארת היטב את תכונות הפולימר בסקאלת אורך גדולה. היתרון של מודל זה נובע מן הפשטות המתמטית המקלה על החישובים המתבצעים באמצעות המודל. שרשרת זו מתוארת לרוב על ידי מודל מכני בו   חרוזים מחוברים זה לזה באמצעות אוסצילטורים הרמוניים שהאנרגיה הפוטנציאלית של כל אחד מהם היא:

 

כאשר   הוא קבוע בולצמן,   הטמפרטורה ו-   הם וקטורי המיקום של הקפיץ ה-  .

בהקבלה לאנרגיה פוטנציאלית של אוסצילטור הרמוני פשוט   ניתן לראות שקבוע הקפיץ  .

ביביליוגרפיהעריכה

  • M. Doi & S. F. Edwards,The Theory of Polymer Dynamics, New York: Oxford University Press, 1986
  • M. Rubinstein & H. Colby,Polymer Physics, New York: Oxford University Press, 2003
  • Paul J. Flory,Statistical Mechanics of Chain Molecules, Hanser Publishers

הערות שולייםעריכה

  1. ^ Toshihiro Kawakatsu, Statistical Physics of Polymers: An Introduction, Tokyo, 2004