פונקציה חד-חד-ערכית ועל

(הופנה מהדף התאמה חד-חד ערכית)
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציה חד-חד-ערכית ועל היא פונקציה , מהקבוצה לקבוצה , שעבורה לכל קיים יחיד כך ש . בתנאי זה, קיומו של a מבטא את העובדה שהפונקציה היא פונקציה על, והיחידות שלו (כלומר העובדה שלא קיימים שונים שעבורם ) מבטאת את העובדה שהפונקציה חד-חד-ערכית.

דוגמאותעריכה

  • מכירת כרטיסי קולנוע יוצרת התאמה בין קהל הצופים לבין הכסאות שבאולם הקולנוע. כאשר כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית ועל - לכל כיסא באולם הקולנוע מותאם צופה אחד ויחיד. כאשר לא כל הכרטיסים נמכרו, זו התאמה חד-חד-ערכית שאינה על - יש כסאות פנויים באולם.
  • פונקציה המתאימה לכל מספר זוגי את החצי שלו (כלומר מתאימה ל-2 את 1, ל-4 את 2, ל-6 את 3 וכו') היא פונקציה חד-חד-ערכית ועל מקבוצת המספרים הזוגיים לקבוצת המספרים הטבעיים.
 
גרף פונקציה   בתחום  
  • הפונקציה   היא חד-חד-ערכית ועל בתחום  , משום שכל ערך של y בקטע הממשי   מתקבל בדיוק פעם אחת. הפונקציה איננה חד-חד-ערכית בתחום   משום שכל ערך של y בקטע הממשי   מתקבל פעמיים (הערך 4, למשל, הוא   וגם  ).
  • הפונקציה   היא חד-חד-ערכית ועל בתחום  , משום שכל ערך של y בקטע הממשי   מתקבל בדיוק פעם אחת.

דיאגרמות להמחשהעריכה

תכונות ושימושיםעריכה

אם קיימת פונקציה כזו, הקבוצות   ו-  נקראות "שקולות" והן בעלות אותה עוצמה.
פונקציה היא חד-חד-ערכית ועל אם ורק אם היא הפיכה, ולכן יחס השקילות הזה בין קבוצות הוא יחס סימטרי.

אם על הקבוצות   מוגדר מבנה נוסף (פעולות אלגבריות, טופולוגיה, מטריקה וכדומה), אז פונקציה חד-חד-ערכית ועל ביניהן השומרת על המבנה נקראת איזומורפיזם.

פונקציה חד-חד-ערכית ועל מקבוצה אל עצמה נקראת תמורה.
אוסף התמורות על קבוצה   הוא חבורת הסימטריות של הקבוצה; לדוגמה, הפונקציה המתאימה לכל מספר שלם את העוקב שלו, היא תמורה על המספרים השלמים. פונקציות חד-חד-ערכיות ועל הן מאבני הבניין של צפנים סימטריים מודרניים רבים בקריפטוגרפיה.

ראו גםעריכה

קישורים חיצונייםעריכה

  ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.