הבדלים בין גרסאות בדף "משפטי האי-שלמות של גדל"

מ
אין תקציר עריכה
מ (←‏ההשפעה של המשפט: קישורים פנימיים)
מ
 
==מבוא לא פורמלי==
מראשית ימי ה[[מתמטיקה]] ועד ל[[המאה ה-20|מאה העשרים]] פעלו ה[[מתמטיקאי|מתמטיקאים]]ם מתוך הנחה שבטיפול בכל טענה מתמטית ייתכנו רק שני כיוונים: ניתן [[הוכחה|להוכיח]] את הטענה, או לחלופין ניתן [[הפרכה|להפריכה]] (כלומר להוכיח שהטענה אינה נכונה). גם אם קשה מאוד לפתור בעיה מסוימת, הרי אם יושקעו בה מאמץ וכשרון במידה מספקת - תימצא לה הוכחה נאותה. [[דויד הילברט]], גדול המתמטיקאים בתחילת המאה העשרים, ידע שזו הנחה שלא זכתה להוכחה, אך הוא היטיב לתארה באומרו: "ההכרה ביכולת לפתור כל בעיה מתמטית היא תמריץ עז לכל מי שטורח על הפתרון. אנו שומעים בתוכנו את הקריאה המתמדת: הנה הבעיה, מצא את פתרונה, אתה יכול לעשות זאת בכוח המחשבה בלבד, כי במתמטיקה לא ניתקל בחוסר יכולת לדעת".
 
בשנת [[1931]] הוכיח הלוגיקן [[קורט גדל]] (Gödel), במאמרו "על טענות שאינן ניתנות להוכחה ב[[פרינקיפיה מתמטיקה (ראסל)|פרינקיפיה מתמטיקה]] ובמערכות דומות", שהנחה זו שגויה.
משפט גדל היווה גם, על פי תפיסות מסוימות, הפרכה לתפיסה ה[[פורמליזם (מתמטיקה)|פורמליסטית]] של המתמטיקה כאוסף כללים חסרי משמעות מחוץ למערכת או שמשמעותם מחוץ למערכת אינה עניין מתמטי. חוסר היכולת לקבוע פורמלית את נכונותם של משפטים אלו ואחרים שימש כראייה לכך שהאדם לא מסוגל לתפוס כל אמת, שהרי כל הוכחה הידועה לאדם מבוססת על מערכת אקסיומות סופית.
 
טענה אחרת דווקא מסיקה מהמשפט את עליונותו של האדם. על פי טענה זו, ישנן אמיתות שאף [[מחשב]] תאורטי לא יכול להכילן (מדובר על מודל של מחשב, בלי תלות בקיומו הממשי, ראו [[מדעי המחשב]] ו[[מכונת טיורינג]]), כיוון שעל פי [[תזת צ'רץ'-טיורינג]] כל ההוכחות האפשריות של המחשב המושלם ([[מכונת טיורינג]]) יכולות להיות מאורגנות בצורת מערכת פורמלית. ואולם, האדם יהיה מסוגל לדעת גם טענות שלא כלולות במערכת זו (דוגמה המובאת לטענה זו היא עקביות המערכת הפורמלית בה משתמש המחשב). הפיזיקאי [[רוג'ר פנרוז]] התבסס על משפטי האי-שלמות של גדל בהעלותו את ההשערה כי ה[[אינטליגנציה]] האנושית ניתנת להסבר רק על ידי קיומן ההיפותטי של אינטראקציות קוונטיות ב[[מוח]]. אף לא אחת מטענות אלו מוסכמת על כלל הפילוסופים, ובוודאי ששתיהן אינן עומדות בדרישות ה[[ריגורוזיות]] המתמטית.
 
ההשפעה מחוץ לתחומי המתמטיקה הייתה רבה אף היא. משפט האי-שלמות משמש את חסידי [[העידן החדש]] על מנת לנגח את יומרתו כביכול של המדע לדעת הכל. לטענתם, אם אפילו המערכות המתמטיות הבסיסיות ביותר אינן ניתנות להוכחה, אזי ישנה בעייתיות בגישה על פיה מסוגל המדע להבין את העולם. משפט זה נכרך לעתים קרובות יחד עם [[מכניקת הקוונטים]] בידי גורמים עוינים למדע על מנת להוכיח את אי היכולת של המדע לדעת הכול. תרומתו של המשפט ל[[פוסטמודרניזם]] עמדה בניגוד מוחלט לגדל, שהיה [[פלטוניזם|פלטוניסט]].
 
בספרו [[שלוש מהפכות קופרניקניות]] הציג ה[[פרופסור]] [[זאב בכלר]] את משפטי האי-שלמות של גדל כהפרכה אחת מני רבות לתפיסה אותה הוא מכנה "אקטואליזם". במקרה זה, טענתו היא שהמתמטיקה מכילה תוכן ולא רק צורה, בניגוד לתפיסות אקטואליסטיות שטוענות להפך. זאת, בהתאם להתמקדותם הכללית (על פי המתואר בספר) בצורניות ובשפה ולא בעולם, מתוך ההנחה ש"אין משמעות למושג האמת"- פילוסופיה שתקפה הן לגבי המוסר והן לגבי המדע והמתמטיקה. בכך הולך בכלר בדרכו של גדל עצמו במידת מה, בניגוד לתפיסות הפוסטמודרניות, שכן גדל האמין באמת אחת והתכוון שמשפטו יהווה הפרכה לפורמליזם שראה כמרוקן את המתמטיקה מתוכנה.
 
==ראו גם==
 
==קישורים חיצוניים==
* ''[http://www.research.ibm.com/people/h/hirzel/papers/canon00-goedel.pdf On Formally Undecidable Propositions Of Principia Mathematica And Related Systems]'', תרגום לאנגלית למאמרו המקורי של גדל - ''Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme''.
* אלון עמית, [http://www.haayal.co.il/story_2396 תנו לגדול בשקט], [[האייל הקורא]]
{{ynet|גדי אלכסנדרוביץ'|משפטי אי השלמות של גדל: הטוב, הרע והיפה|4139368|26.10.2011}}