משפט הרבע של קוב

באנליזה מרוכבת, משפט הרבע של קוב (Koebe quarter theorem) קובע כי התמונה של מעגל היחידה תחת פונקציה אוניוולנטית מכילה כדור ברדיוס . פונקציית קוב היא דוגמה לפונקציה שממקסמת את הטענה, ולכן לא ניתן לשפרה. המשפט נקרא על שם המתמטיקאי פאול קוב (Paul Koebe).

ניסוחעריכה

תהי   פונקציה אוניוולנטית, כלומר פונקציה הולומורפית וחד חד ערכית, כאשר   הוא מעגל היחידה. משפט הרבע של קוב טוען כי התמונה   מכילה כדור ברדיוס   סביב  .

הוכחהעריכה

על ידי תהליך נרמול ניתן להניח כי  , כלומר  . לכל  , נגדיר  ; היא גם אוניוולנטית ב- . לפי משפט דה ברנז' על   עבור  , נקבל  , לכן  , כדרוש.

פונקציית קובעריכה

הגדרה ותכונותעריכה

פונקציית קוב היא הפונקציה ההולומורפית   הנתונה על ידי  . זוהי פונקציה חשובה במיוחד, שכן היא מהווה דוגמה לטענות רבות. ראשית, היא ממקסמת את משפט הרבע של קוב - מתקיים   ו- .

פונקציית קוב ממקסמת גם את משפט דה ברנז', הטוען כי המקדמים   בפיתוח טיילור של פונקציה אוניוולנטית מקיימים  .

בנייה גאומטריתעריכה

את פונקציית קוב ניתן לבנות כהרכבת פונקציות באופן הבא.

נביט בפונקציה  . זוהי העתקה קונפורמית. הפונקציה   מעבירה את   לכל המישור המרוכב בלי הקרן  . כעת, נבצע את תהליך הנרמול על   ונקבל את פונקציית קוב -  .

במילים אחרות, פונקציית קוב נבנית מפונקציה קונפורמית בין מעגל היחידה למישור בלי הקרן השמאלית, עליה מפעילים את תהליך הנירמול.

ראו גםעריכה