נוסחת ברהמגופטה

בגאומטריה אוקלידית, נוסחת ברהמגופטה, היא נוסחה לחישוב שטח של מרובע בר חסימה, על בסיס צלעותיו. פותחה על ידי המתמטיקאי ההודי בראהמגופטה.

נוסחהעריכה

שטח K של מרובע בר חסימה, שאורך צלעותיו הם a ,b ,c ,d, ו-s הוא מחצית ההיקף של הצורה (  ) הוא:

 

הנוסחה היא הכללה לנוסחת הרון למשולשים, וניתן להסתכל עליה כך כאשר אורך אחת הצלעות הוא 0. ניתן לרשום את הנוסחה גם מהצורה:

 
 

הוכחהעריכה

 
דיאגרמה להוכחה

אנחנו נביא כאן הוכחה שבה השתמשנו באלגברה ובטריגונומטריה, והוכחה זה היא שונה מהוכחתו המקורית של ברהמגופטה. מרובע חסום ABCD ששטחו K הוא סכום השטחים של המשלושים ADB△ ו-BDC△,

 

מכיוון שמרובע ABCD הוא בר חסימה, אז DAB = 180° − ∠DCB∠, מכאן sin A = sin C,אז ניתן לרשום את השטח כ-

 

ומכאן:

 
 

ניתן לפתור עבור צלע DB במשולש ADB△ על ידי משפט הקוסינוסים, אז

 

ובגלל ש-cos C = −cos A (מכיוון שהם זוויות שמשלימות ל-360), ומכאן

 

אז

 
 

ניתן לפרק את הביטוי על ידי נוסחת כפל מקוצר, אז

 

ולאחר מכנה משותף,

 
 

ועל ידי הצבה של מחצית ההיקף S, אז נקבל

 

נוציא שורש ונחלק ב-16,ונקבל את הנוסחה:

 

הכללותעריכה

ניתן להכליל את הנוסחה למרובע שאינו בר חסימה,

 

כאשר θ זה מחצית סכום הזוויות ההפוכות (בחירת הזוויות היא שרירותית, כי אם נבחר את הזוג השני, אז הזווית תהיה 180 פחות θ, אז cos(180° − θ) = −cos θ, ומכאן cos2(180° − θ) = cos2 θ, אז הזוויות לא משנה), נוסחה זו ידועה בתור נוסחת ברטשניידר. כאשר המרובע הוא בר חסימה, אז θ שווה ל-90°, אז:

 

קישורים חיצונייםעריכה