שיחה:כלל השרשרת

תגובה אחרונה: לפני 3 שנים מאת La Nave Partirà בנושא נגזרת של פונק מרובות משתנים

מהם התנאים לקיום ?

דרושה הרחבה

עריכה

למה רק למשתנה אחד? מה אם כלל השרשרת לפונקציות בעולת מספר משתנים? 109.67.219.96 14:40, 22 באוגוסט 2011 (IDT)תגובה

דרושה הוכחה

עריכה

איך מוכיחים את כלל השרשרת? Nanoo - שיחה 15:57, 16 ביולי 2012 (IDT)תגובה

הוספתי. שדדשכשיחה • כ"ו בתמוז ה'תשע"ב • 16:26, 16 ביולי 2012 (IDT)תגובה

ההוכחה פגומה

עריכה

אין התייחסות למקרה ש-g של x שווה ל-g של x0 (כדי שלא יווצר מצב של "חילוק ב-0"), בגרסה האנגלית יש להוכחה מלאה עם פתרון לבעיה הזאת.

הוכחה חילופית?

עריכה

שם בעמוד 4 הוכחה שנראה לי שחוסכת את פעולת החילוק ואז לא נדרשים לפונקציית עזר. אני לא יודע מי כתב את זה. האם זה נכון?--גיאומטריה1 - שיחה 09:21, 29 בינואר 2020 (IST)תגובה

בינתיים אני כותב את זה במשתמש:גיאומטריה1/הוכחה לכלל השרשרת.--גיאומטריה1 - שיחה 09:57, 29 בינואר 2020 (IST)תגובה

הגדרת הנגזרת בנקודה  , היא הגבול  .

כאשר   היא תוספת כלשהי ל-  ו-  היא פוקציה של   והיא התוספת ל-  כאשר מוסיפים ל-   .

מכח הגדרה זו נראה כי   כאשר   ו-  היא פונקציה התלויה בנגזרת.

אנחנו רוצים למצוא את הנגזרת של הפונקציה המורכבת   כאשר   ו- 

לפי ההגדרה  

כאשר נחלק ב-  ונעבור לגבול כש-  שואף לאפס, כל הרכיבים יתאפסו ותשאר רק מכפלת הפונקציות. --גיאומטריה1 - שיחה 15:51, 29 בינואר 2020 (IST)תגובה

נגזרת של פונק מרובות משתנים

עריכה

הועבר מהדף ויקיפדיה:דיווח על טעויות

בנגזרת של פונק מרובות משתנים כתוב שם Dgf=D_f(g)Df במקום Dgf=D_g(f)Df

כי צריך לעשות דיפרנציאל של הפונקציה ה׳חיצונית׳

מי יכול לבדוק אם זה נכון? -La Nave Partirà שיחה 12:22, 19 באוקטובר 2021 (IDT)תגובה

חזרה לדף "כלל השרשרת".