פתיחת התפריט הראשי

חבורות ההומולוגיה (Homology groups) של מרחב טופולוגי הן חבורות אבליות המותאמות למרחב, ומספקות מידע מסוים על המרחב. הן מסומנות לכל שלם. בדומה לחבורות ההומוטופיה, חבורות ההומולוגיה מודדות שינויים רציפים על מרחבים טופולוגיים. הן נקראות לעיתים גם חבורות ההומולוגיה הסינגולרית (Singular homology).

חבורות ההומולוגיה הן אינווריאנטים הומוטופיים - למרחבים הומוטופיים (ובפרט הומיאומורפיים) אותן חבורות ההומולוגיה. אינווריאנט זה איננו שלם - ייתכנו מרחבים לא הומוטופיים עם אותן חבורות ההומולוגיה. בכל זאת, במקרים מסוימים של מרחבי CW הן מאפיינות את המרחב - למשפט וייטהד יש מקבילה הומולוגית, בעזרת משפט הורוויץ.

לחבורות ההומולוגיה שימושים רבים בטופולוגיה כמו גם בתחומים אחרים, כמו גאומטריה דיפרנציאלית, אנליזה ועוד.

הקדמהעריכה

תורת הומולגיהעריכה

  ערך מורחב – תורת ההומולוגיה

תורת הומולוגיה היא אוסף של פנקטורים  . דהיינו, פנקטורים שמתאימים לכל זוג מרחבים טופולוגי   המקיים   חבורה אבלית ומקיימות:

  1. אינווריאנטיות תחת הומוטופיה.
  2. סדרה מדויקת - קיימות פונקציות   המשרות סדרה מדויקת  
  3. החבורות המתאימות לנקודה הן  .
  4. ההעתקות טבעיות ביחס לפונקציות של זוגות.
  5. מתקיים משפט הקיצוץ.

הומולוגיה סינגולריתעריכה

ההומולוגיה סינגולרית אכן מקיימת את כל התנאים לעיל. למרות זאת, בדרך כלל מוגדרות ראשית חבורות ההומולוגיה של מרחב   ולא של זוג, ובעזרת המונחים מהומולוגיה של מרחב מגדירים הומולוגיה של זוגית. ההומולוגיה הסינגולרית היא ההומולוגיה המוכרת ביותר, ועל כן חבורות ההומולוגיה הסינגולרית נקראות חבורות ההומולוגיה. ההגדרה של הומולוגיה סינגולרית היא כבדה וטכנית ומערבת מושגים רבים מאלגברה הומולוגית, כולל מרדף דיאגרמות רב.

ההומולוגיה סינגולרית נבנית על סמך סימפלקסים סינוגלריים. היישומים של בנייה זו הם הבנת תהליכים גאומטריים רציפים בצורת סימפלקסים על מרחבים טופולוגיים שונים. מבחינה אינטואיטיבית, ההומולוגיה הסינגולרית ה-n-ית מודדת את החללים ה-n ממדיים של המרחב. טכנית, דבר זה נעשה באמצעות השוואת כל הדרכים לקפל סימפלקסים לתוך המרחב. שני קיפולים כאלה נקראים שקולים, או הומולוגיים, אם השפות שלהם משותפות.

היסטורית, המקור להומולוגיה סינגולרית הוא בעבודה של פואנקרה - שבנה אובייקטים הרבה יותר פשוטים; מאחורי הבניות שלו עומדת האינטואיציה הגאומטרית להומולוגיה הסינגולרית.

סימפלקס סינגולריעריכה

  ערך מורחב – סימפלקס
 
הסימפלקס הסטנדרטי ה-2-ממדי

סימפלקס הוא מבנה גאומטרי בסיסי. סימפלקס  -ממדי כללי הוא הקמור של   נקודות בלתי תלויות אפינית במרחב הממשי  .

מגדירים את הסימפלקס ה- -ממדי, או הסימפלקס הסטנדרטי, להיות הסימפלקס שהוא הקמור של הבסיס הסטנדרטי של  . זוהי הצורה הגאומטרית שמחברת את   הנקודות במרחק 1 מראשית הצירים לכיוון כל ציר. הסימפלקס מסומן על ידי  . מפורשות -

 

אם נוסיף גם את הראשית, הנקודה  , נקבל את הסימפלקס הסטנדרטי "הנפחי"

 

לדוגמה: ב-  הסימפלקס הדו-ממדי   הוא הפאה המתוארת באיור משמאל, ואילו הסימפלקס "הנפחי" התלת-ממדי   הוא כל הנפח הכלוא בין בין סימפלקס זה למישורים המוגדרים על ידי הצירים (הנפח שמתחת לפאה הירוקה באיור, המוגבל על ידי המישורים x=0, y=0, z=0).

נסמן ב-  את הסימפלקס ה- -ממדי המתקבל מכל הקואורדינטות של הסימפלקס המקורי מלבד הקואורדינטה ה-i. זוהי אחת הדפנות של הסימפלקס המקורי.

סימפלקס סינגולרי במרחב טופולוגי   הוא העתקה רציפה  . כלומר, סימפלקס סינגולרי ב-  הוא עיוות של הסימפלקס הסטנדרטי לתוך המרחב.

הגדרהעריכה

יהי מרחב טופולוגי  .

נגדיר  . תהי   החבורה האבלית החופשית הנוצרת על ידי האוסף הזה. איברי חבורה זו נקראים שרשראות, משום שאלו הם סכומים פורמליים סופיים של סימפלקסים עם משקלים עליהם.

נגדיר לכל n פונקציית שפה   על ידי  , כלומר נקבל סכום מסומן של דפנות הסימפלקס  .

קיבלנו קומפלקס שרשראות של החבורות הנוצרות

 

חישוב ישיר מראה שמתקיים התנאי של הקומפלקס, דהיינו:  . כלומר, שפה של שפה היא אפס.

שרשרת ששפתה אפס נקראת מחזור או ציקלוס, מכיוון שהיא מתאימה לרצף מחזורי של קטעים. לדוגמה, המעגל הוא סימפלקס חד ממדי (דהיינו-קטע) שקופל כך שתמונת הקצוות זהה. שפת קטע היא בדיוק קצותיו, כך שלפי הגדרת השפה אנחנו נקבל את תמונת הקצוות עם מקדם 1 ואז את אותה תמונה עם מקדם (1-), כך שהתמונה תתאפס. למי שרוצה נוסחאות יהי   ההעתקה שלנו מקטע היחידה למרחב שיוצרת עיגול, ונניח שתמונת הקצוות היא v ונקבל  

שרשרת שהיא שפה של שרשרת ממימד גבוה יותר נקראת שפה.

חבורת ההומולוגיה הסינגולרית ה-n היא חבורת המנה  , כלומר, מחלקת הומולוגיה היא אוסף של מחזורים שיש להם שפה משותפת. לדוגמה, שני מעגלים שמחוברים, ליצור את הספרה 8 הם הומולוגים.

הומולוגיה מצומצמתעריכה

לעיתים רבות נוח לחשב דווקא את חבורות ההומולוגיה המצומצמות של מרחב. נשים לב שהסדרה הקודמת מסתיימת כך:

 

כעת, נרצה להוסיף עוד גורם בסוף הסדרה:

 

כאשר   היא ההעתקה  . אכן מתקיים   ויש שוויון כאשר   קשיר מסילתית. קומפלקס זה משרה חבורות הומולוגיה, הנקראות חבורות ההומולוגיה המצומצמות  .

מעצם הבנייה, חבורות אלו שוות כמעט כולן לחבורות הרגילות, פרט לחבורה האפס -   נבדלת מ-  ביוצר אבלי חופשי אחד.

החבורות הראשונותעריכה

לחבורות ההומוטופיה הראשונות משמעות גאומטרית וטופולוגית אינטואיטיבית.

החבורה האפס   סופרת את מספר רכיבי הקשירות של המרחב. בעזרת טענה זו ניתן לספור את המרכיבים מלכתחילה; אחד היישומים של שיטה זו הוא הוכחת משפט העקומה של ז'ורדן באופן קל יחסית.

החבורה הראשונה   איזומורפית באופן טבעי לאבליזציה של החבורה היסודית של המרחב. טענה זו יחד עם טבעיות האיזומורפיזם ניתן ליישם במספר טענות חישוביות.

מקרה מיוחד נוסף הוא החבורה ה-  של יריעה טופולוגית סגורה  -ממדית שווה ל-  אם היריעה אוריינטבילית, ושווה לאפס אחרת.

מבנהעריכה

חבורות ההומולוגיה הן אינווריאנטים הומוטופיים - כלומר, למרחבים הומוטופיים אותן חבורות ההומולוגיה. בפרט, החבורות המצומצמות של מרחב כוויץ כולן אפס. בכל זאת, הן לא מבדילות באופן מלא בין מרחבים טופולוגיים - ישנם מרחבים בעלי אותן החבורות שאינם שקולים הומוטופית, למשל טורוס   ואיחוד נקודתי  .

לצורך חישוב חבורות ההומולוגיה יש מספר שיטות. המוכרת והבסיסית ביותר היא סדרת מאייר-ויאטוריס, סדרה מדויקת המקשרת בין החבורות של מרחב לחבורות של כיסוי טוב שלו, ובכך מקלה על החישוב. השימוש בסדרה מקביל במובן מסוים לשימוש במשפט ואן קמפן בעת חישוב החבורה היסודית. שיטה נוספת לחישוב חבורות של מרחבים רבים היא שיטה שפותחה במיוחד לחישוב החבורות של מרחבי CW.

ההומולוגיה הסינגולרית ביחס לכיסויעריכה

ההומולוגיה הסינגולרית של כיסוי של מרחב טופולוגיה, היא הומולוגיה ביחס לכיסוי טוב שלו  . כדי להגדירה, ראשית מגדירים   להיות אוסף הסימפלקסים הסינגולריים שתמונתם מוכלת באחד ה- ; כמו כן מגדירים  , החבורה האבלית החופשית מעל  . מהסדרה שלעיל, היות שמתקיים  , מושרה קומפלקס שרשראות:

 

מקומפלקס שרשראות זה משרה את חבורות ההומולוגיה היחסיות:  .

כעת, משפט חשוב קובע שהעתקת ההכלה   משרה איזומורפיזם  , והוא למעשה איזומורפיזם טבעי ביחס להעתקות המכבדות את הכיסוי.

נראה שלא חידשנו כלום, אך למעשה הרווחנו דיי הרבה - שימוש נפוץ במיוחד בבנייה זו הוא כאשר הכיסוי הוא כיסוי של שתי תתי-קבוצות נחתכות לא טריוויאלית, המוביל לבניית סדרת מאייר-ויאטוריס, סדרה נפוצה במיוחד העוזרת בחישוב חבורות הומולוגיה רבות.

חבורות ההומולוגיה היחסיתעריכה

כאמור לעיל, תורת הומולוגיה מוגדרת בעזרת התאמת חבורות לזוגות של מרחבים   כאשר   - אך במקרה של הומולוגיה סינגולרית בדרך כלל מגדירים אותן אחרי הגדרת  .

כדי להגדיר את חבורות ההומולוגיה היחסיות, נגדיר  . היות שמתקיים   מושרות העתקות  , והן משרות חבורות הומולוגיה - הנקראת חבורות ההומולוגיה היחסיות, ומסומנות  . לחבורות אלו אכן מתאימה סדרה מדויקת  . הסדרה המדויקת של חבורות ההומולוגיה היא אכן טבעית ביחס להעתקות המכבדות את הכיסוי.

לאחר הגדרת ההומולוגיה היחסית, ניתן להוכיח את משפט הקיצוץ - הקובע כי אם   כך ש- , אז  .

תוצאות של ההומולוגיה הסינגולריתעריכה

ראו גםעריכה