פונקציית בטא

פונקציית בטא היא פונקציה של שני מספרים מרוכבים המוגדרת על ידי האינטגרל:

:

כאשר החלקים הממשיים מקיימים:

הפונקציה נחקרה לראשונה על ידי לאונרד אוילר ואדריאן-מארי לז'נדר ושמה ניתן לה על ידי ז'אק בינֶה. פונקציית בטא מגדירה את פונקציית צפיפות ההסתברות של התפלגות בטא והיא משרעת הפיזור הראשונה שהתגלתה בתורת המיתרים, על ידי הפיזיקאי גבריאל ונציאנו.

מאפייניםעריכה

פונקציית בטא היא פונקציה סימטרית:

 

היא קשורה באופן הדוק לפונקציית גמא:

 

הגדרות אינטגרליות נוספות לפונקציה:

 
 

זהויות נוספות:

 
 

בדומה להרחבת פונקציית העצרת לערכים מרוכבים בעזרת פונקציית גמא, ניתן להרחיב מקדמים בינומיים בעזרת פונקציית בטא:

 

קישורים חיצונייםעריכה

  מדיה וקבצים בנושא פונקציית בטא בוויקישיתוף