GPS

מערכת ניווט לוויינית

מערכת איכּוּן עולמית (שמות מקובלים נוספים: מערכת מיקום גלובלית (ממ"ג) או מערכת מיקום חובקת-עולם (ממח"ע); באנגלית: Global Positioning System ובקיצור - GPS - גִ'י פִּי אֶס. בעברית מכונה: נַוְטָן) היא מערכת ניווט לוויינית המתבססת על כמה עשרות לוויינים (בתצורה של מערך לוויינים) ייעודיים ששיגרה מחלקת ההגנה של ארצות הברית. הלוויינים סובבים סביב כדור הארץ ומשדרים אותות זמן מדויקים המבוססים על שעונים אטומיים שהם נושאים[1].

כ-31 לווייני הממח"ע (GPS) כגון זה שוגרו למסלול סביב כדור הארץ החל משנת 1978
מודול אופייני של מקלט GPS
ממדים: 15x17 מילימטר

אותות אלה נקלטים על ידי מכשירים שונים רבים מספור, ומשמשים בדרך-כלל לקביעת המיקום המדויק של המכשיר לצורכי ניווט.

השם GPS משמש גם כשם כללי למערכת ניווט (נווטן) שמספקת מעבר למיקום גם מפות והכוונה לנקודות יעד.

היסטוריה

עריכה

פרויקט ה-GPS יצא לדרך בארצות הברית בשנת 1973 על מנת להתגבר על המגבלות של מערכות הניווט הקודמות, תוך כדי שילוב רעיונות מהמערכות הקודמות, כולל מספר מחקרים הנדסיים מסווגים משנות השישים. מחלקת ההגנה של ארצות הברית פיתחה את המערכת, שהשתמשה במקור ב-24 לוויינים. תחילה המערכת פותחה עבור צבא ארצות הברית[1] ובשנת 1995 החלה לפעול באופן מלא[1]. המערכת הותרה לשימוש אזרחי כבר בשנות השמונים. פיתוח ה־GPS והמצאתו מיוחסים לרוג'ר ל' איסטון ממעבדת המחקר של חיל הים האמריקאי(אנ'), לאיוואן א' גטינג מהתאגיד (The Aerospace Corporation) ולברדפורד פרקינסון ממעבדת הפיזיקה על שם ג'ון הופקינס.

תכנון ה-GPS מבוסס חלקית על מערכות ניווט-רדיו קרקעיות, כגון LORAN ומערכת הניווט "דֵקָה"(אנ'), אשר פותחו בשנות הארבעים המוקדמות והיו בשימוש הצי המלכותי הבריטי במלחמת העולם השנייה.

הפיזיקאי הגרמני-אמריקאי פרידוורט וינטרברג, הציע לבחון את תורת היחסות הכללית ולבדוק האם זמן אכן מאט בשדה כבידתי חזק. בניסוי הוא השתמש בשעונים אטומיים מדויקים אשר הוכנסו לתוך לוויינים שחגו סביב כדור הארץ. תורת היחסות הכללית והפרטית מנבאת כי למתבוננים בכדור הארץ, שעונים בלוויינים יזוזו 38 מיקרו-שניות יותר מהר כל יום וחישובי מיקום ה-GPS יטעו בשגיאה מצטברת של כ-10 ק"מ בכל יום. תאוריות אלה התבררו כנכונות[2].

חלק מלווייני המערכת כוללים ציוד של מערכת Cospas-Sarsat.

מערכת ה-GPS

עריכה

לווייני הממח"ע (GPS)

עריכה

התכנון המקורי של המערכת התבסס על 24 לוויינים שיקיפו את כדור הארץ בשלושה מסלולים שונים, אך לבסוף אומץ מודל של שישה מסלולים שונים שבכל אחד ארבעה לוויינים. בשנות האלפיים, מספר הלוויינים גדול יותר. בשנת 2008 פעלו כבר 31 לוויינים, כך שעל-פי-רוב, ניתן לראות כתשעה לוויינים מכל נקודה בקרקע בכל רגע נתון, מה שמשפר את דיוק האיכון.

 
בתרשים ניתן לראות את לוויני המערכת מסודרים בשישה מסלולים. מיקום המסלולים קבוע ביחס לגרמי השמיים, אבל ניתן לראות כי כדור הארץ מסתובב ביחס אליהם. מקלט על פני כדור הארץ (בכחול בהיר) מסוגל לקלוט אותות רק מהלווינים שהוא יכול "לראות"; אלו מסומנים בכחול. הלוויינים האחרים מסומנים באדום.

הלוויינים חגים בגובה של כ-20,200 קילומטר, ומשלימים הקפה כל 11 שעות ו-58 דקות.

המסלול של כל הלוויינים במערכת מפורסם, ומאוחסן בכל מקלט ברשימה שנקראת "אלמנך GPS". כיוון שידיעת המיקום של כל לוויין חיונית לתהליך האיכון, משרד ההגנה האמריקאי עוקב אחר הלוויינים בדיוק רב בעזרת מערכת תחנות עקיבה. תחנות העקיבה כוללות מקלטי GPS מדויקים הפועלים בשני תדרי הקליטה (L1 ו-L2, למטה), וממוקמות כך שכל לוויין ייראה על ידי שתי תחנות עקיבה לפחות. מיקומם המדויק של הלוויינים מחושב, והאלמנך המעודכן מופץ ללוויינים (ודרכם - למקלטים) דרך ארבעה מוקדי שידור. עדכון כזה מתבצע בדרך כלל לפחות פעם ביום.

כל לוויין משדר אות זמן, המקודד בסדרה פסאודו אקראית המשמשת לזיהוי הלוויין.

האות המשודר

עריכה
  ערך מורחב – אותות GPS

כל לווייני ה-GPS משדרים בתדר 1.57542 גה"צ (הנקרא L1) ובתדר 1.2276 גה"צ (הנקרא L2). הנתונים נשלחים בקצב של 50 סל"ש, בטכניקת CDMA. הנתונים המשודרים הם:

  • אות הזיהוי של הלוויין.
  • המיקום המסלולי (האורביטלי, orbital) של הלוויין.
  • הזמן לפי שעון אטומי.

קביעת המיקום של מקלט ה-GPS נעשית על ידי חישוב מרחקו של המקלט מכל אחד מלווייני ה-GPS שבקו הראייה. החישוב מתבסס על הזמן שלקח לאות להגיע מהלוויין למקלט, המחושב לפי שעת קליטת האות הלוויני במקלט ה-GPS, לפי השעון שבמקלט, פחות שעת שידור האות בלוויין, לפי השעון האטומי של הלוויין (כלול כאמור במידע המשודר), כפול מהירות אות הרדיו (מהירות האור).

דיוק בררני (סלקטיבי)

עריכה

בעבר האות שהיה זמין לניווט לווייני בשימושים אזרחיים הוגבל בדיוקו, במכוון. אות בדיוק משופר היה זמין לצבא ארצות הברית ולשימושים מיוחדים של ממשל ארצות הברית. ב-1 במאי 2000 הודיע נשיא ארצות הברית, ביל קלינטון, שהדיוק הסלקטיבי יבוטל עד 2006 כך שכל משתמשי המערכת יזכו לדיוק הגבוה יותר. הביטול בוצע בפועל ב-2 במאי 2000. ב-2007 הודיע נשיא ארצות הברית דאז, ג'ורג' בוש, כי הדור החדש של לווייני GPS כלל לא יכלול את האפשרות לשיבוש בררני של האות לשימוש אזרחי[3].

דיוק קביעת המיקום על ידי מקלטי ה-GPS

עריכה

לווייני ה-GPS שבפעולה, (נכון לשנת 2012), לוויינים מסוג "בלוק 2" (בשילוב עם מקלט איכותי), מבטיחים דיוק מיקום של 5 מטרים בציר האנכי ו-3 מטרים בשימוש באות האזרחי ב-95% מהזמן[4] - לפני חישוב השגיאה הנובעת (בעיקר) מהיונוספרה. מעשית, דיוק העולה על כ-10 מטרים דורש תיקון השפעות היונוספרה. מקלטי GPS בשימוש הצבא האמריקאי יכולים לפרש את שני תדרי השידור של הלוויינים, ולנטרל את השפעת היונוספרה בהסתמך על ההבדלים בין שני האותות. מכיוון שבתדר L2 אין (כרגע) אות המובן למקלטי GPS אזרחיים, מקלטים אזרחיים בדיוק גבוה מסתמכים על מערכות DGPS או על הפקת מידע חלקי מהאות הצבאי בתדר L2 לשם שיפור הדיוק.

הרחבות

עריכה

תחנות קרקעיות - ממח"ע (DGPS)

עריכה

תחנות קרקעיות שמיקומן הגאוגרפי בעולם ידוע בדיוק גבוה מאוד. התחנה הקרקעית מקבלת מהלוויינים את המיקום המשוער של אותה תחנה והיות שמיקום התחנה ידוע בדיוק רב יותר, ניתן לדעת מה הסטייה שתתקבל על ידי מערכת הממח"ע (GPS) הרגילה. אותה תחנה קרקעית משדרת "תיקון" למכשיר הממח"ע (GPS) בהתאם לסטייה ובכך מאפשרת הגברת דיוק הלוויינים.

לשיטה זו קוראים ממחע"ד (ראשי תיבות של מערכת מיקום חובקת-עולם דִּיפֶרֶנְצְיָאלִית או באנגלית Differential Global Positioning System). בהסתמך על תחנות אלו אפשר להגיע לדיוק גבוה של כ-1–2 ס"מ, הדרוש למודדים מקצועיים. בישראל מפוזרות 23 תחנות כאלו שניתן להתעדכן במדידות שלהן דרך האינטרנט[5]. בעתיד מתוכנן שתחנות אלה תספקנה מידע בזמן אמת, ובכך תאפשרנה להגיע לחישובים מדויקים ובכך לוותר על נקודות שילוש (הטריאנגולציה) הקיימות בשטח.

כמו כן, קיימות בעולם מספר מערכות של רשתות תחנות קרקע המשדרות את נתוני הסטייה למספר לוויינים גאוסינכרוניים, שבתורם משדרים נתונים אלו למקלטי ה-GPS רגילים המאופשרים DGPS, ובכך מעלים את רמת הדיוק האופקי והאנכי של אותות ה-GPS לטווח שבין מטר לשלושה בהתאם למערכת. קיימות היום ארבע מערכות גלובליות עיקריות: WAAS הפועלת בצפון אמריקה, EGNOS הפועלת באירופה, MSAS היפנית הפועלת במזרח אסיה, ו-GAGAN ההודית הפועלת במרכז אסיה. מערכות אלו משמשות כמערכות עזר להנחתת מטוסים.

AGPS היא מערכת עזר המשמשת להשגת מיקום ראשוני מהיר יותר, באמצעות תקשורת עם שרת-עזר, בנוסף ל-24 הלוויינים המשמשים את שירות ה-GPS הרגיל.

קביעת המיקום על סמך אותות הלוויין

עריכה

חישוב באמצעות שלושה לוויינים ושעון מדויק

עריכה

נניח תחילה שאנו יודעים למדוד את השעה בדיוק. במקרה כזה, די לנו לקלוט אותות משלושה לוויינים, B, A ו-C, על מנת לקבוע את מיקומנו. נתאר את התהליך בשלבים, כאשר בכל פעם נוסיף פיסת מידע נוספת ונראה כיצד היא מצמצמת את האפשרויות למיקום.

  • אנו יודעים מתי שודר האות מלוויין A, ומתי הוא נקלט. כלומר, אנחנו יודעים מה משך הזמן שלקח לאות להגיע מהלוויין אלינו, וכיוון שהאות נע במהירות האור, נוכל לחשב את המרחק   ביננו לבין הלוויין, A. אוסף כל הנקודות שהן במרחק זה מ-A הוא ספירה שמרכזה A. המיקום שלנו הוא נקודה כלשהי על ספירה זו.
  • באופן דומה, נוכל לחשב את המרחק   ביננו לבין הלוויין השני, B. ושוב, פיסת מידע זו מגדיר ספירה נוספת, שמרכזה B. החיתוך של שני הספירות הוא מעגל - ואנו יודעים שהמיקום שלנו הוא באחת מנקודות המעגל הזה.
  • המרחק ללוויין השלישי,   מגדיר ספירה שלישית, שמרכזה C. ספירה זו נחתכת עם המעגל (כלומר, עם זוג הכדורים הקודמים) בזוג נקודות. בדרך-כלל, רק אחת מהנקודות הללו מייצגת פתרון הגיוני (למשל, ייתכן שהנקודה האחרת נמצאת הרחק בחלל או במעבי האדמה) - וזהו המיקום שלנו.
 
כדור ומעגל נחתכים בדרך-כלל בשתי נקודות

כל אות נותן לנו משוואה אחת על המיקום שלנו. בדרך-כלל כל משוואה מורידה את הממד של מרחב הפתרונות (כלומר, המיקומים האפשריים) באחד. ואכן, ללא שום אות אנחנו יכולים להיות בכל נקודה במרחב התלת-ממדי. אות אחד מצמצם את המיקומים האפשריים למעטפת כדור, שהיא דו-ממדית. האות השני מצמצם את המיקומים האפשריים למעגל חד-ממדי. לבסוף, האות השלישי מצמצם את מרחב הפתרונות לזוג נקודות, שהיא קבוצה אפס ממדית.

מהירות האור היא כ-300,000 קילומטר בשנייה. מכאן שאפילו טעות של מיליונית השנייה בקביעת השעה יוצרת שגיאות של כ-300 מטר בחישוב המרחקים מהלוויינים, שמתרגמת לשגיאה בסדר גודל של קילומטר בקביעת המיקום. שעונים רגילים צוברים שגיאה גדולה פי כמה מזה בכל שנייה ושנייה, מה שהופך את השיטה שתיארנו ללא ישימה.

משוואה עבור לוויין מסוים בהזנחת כל מקורות השגיאה (כולל שגיאות שעון):

  - זמן המערכת בו עזב האות את הלוויין (ידוע מאחר שהוא משודר כחלק מביטי הניווט של האות)

 - זמן המערכת בו הגיע האות למקלט של המשתמש (ידוע מאחר שהוא מחושב על ידי פונקציית עיבוד האות של המקלט)

 - מהירות האור בריק (קבוע פיזיקלי ידוע)

 - מיקום הלוויין בעת עזיבת האות את הלוויין (ידוע מאחר שניתן לחשב אותו על ידי נתוני אפמריס וזמן השידור שמשודרים כחלק מביטי הניווט של האות)

 - מיקום המקלט בעת בו הגיע האות למקלט (אינו ידוע, זהו הנעלם שיש למצוא, למעשה 3 נעלמים של מיקום תלת־ממדי)

אזי מתקבל:

 

 

במשוואה זו יש 3 נעלמים, והם המיקום של המקלט. כך שעבור 3 לוויינים ניתן לקבל 3 משוואות כנ"ל ולפתור את מיקום המקלט:

 

 

 

נהוג לפתור את המשוואות על ידי ליניאריזציה של המשוואות (קירוב מסדר ראשון) כך שמתקבלת מערכת של 3 משוואות ליניאריות עם 3 משתנים הניתנת לפתרון בקלות.

חישוב באמצעות ארבעה לוויינים וללא שעון מדויק

עריכה

הדרך להתמודד עם בעיה זו היא להתייחס לזמן המדויק כנעלם נוסף בבעיה. הבעיה הופכת לארבע-ממדית, מה שמצריך הוספת משוואה למציאת הפתרון. משוואה כזו יכולה להתקבל ממידע נוסף על המסלול (נניח, אם ידוע שאנחנו בגובה פני הים) או באמצעות אות מלוויין נוסף.

דרך אחת להשתמש באות מלוויין רביעי היא כדלהלן: משתמשים בשלושה לוויינים ובמדידת הזמן המקורבת של השעון הפנימי של המקלט כדי לחשב את המיקום, כפי שתארנו לעיל. הלוויין הרביעי מגדיר כדור נוסף, רביעי; אלמלא שגיאות המדידה, המיקום שחישבנו היה על הכדור הזה. בפועל, ניתן להשתמש במרחק של המיקום שחישבנו מהכדור כדי לאמוד את השגיאה של השעון הפנימי שלנו מהזמן האמיתי, ולכוון אותו מחדש בכל מדידה (ר' תרשים). כך שלמעשה, המקלט לא רק מחשב את המיקום, אלא גם את השעה בדיוק קרוב לזה של השעונים האטומיים על הלויינים עצמם.

 
ההפרש בין המרחק המחושב ללוויין ארבע על סמך שלושת הלויינים האחרים,  , ובין המרחק המחושב על סמך זמן השידור והקליטה של האות ממנו,  , מאפשר לחשב תיקון לשעון של המקלט.

בפועל, כיוון שבכל רגע ניתן לקלוט כתשעה אותות לוויין, כדאי לנצל את המידע מכל האותות. כל אות מגדיר משוואה; בדרך כלל אין דרך לפתור במדויק את כל המשוואות (גם אם מתייחסים לזמן כנעלם נוסף, בשל שגיאות אחרות) אבל ניתן למצוא את ערכי המיקום והזמן שיגרמו למשוואות להתקיים עם שגיאות קטנות ככל האפשר.

כאשר בפתרון משתמשים ביותר מארבע לוויינים, יש אפשרות לבצע שפיות מסוימת על פתרון המיקום. אלגוריתם זה נקרא RAIM,ראשי תיבות של Receiver Autonomous Integrity Monitoring.[6]

כאשר בפתרון משתמשים בשישה לוויינים, ומזהים שהפתרון לא שפוי, אזי יש אפשרות מסוימת למצוא את הלוויין שהמדידה שלו לא תקינה ולפתור שוב ללא המדידה מהלוויין הזה (במידה ויש רק לוויין אחד עם מדידה לא תקינה), כל לוויין נוסף שמשתתף בפתרון מאפשר זיהוי של לוויין נוסף עם מדידה לא תקינה. אלגוריתם זה נקרא FDE ,ראשי תיבות של Fault Detection and Exclusion.[6]

מקורות שגיאה נוספים

עריכה

בקביעת המיקום הנחנו שהאות נע בקו ישר מהלוויין למקלט ואורכו כמרחק בין המקלט ללוויין. הנחה זו אינה נכונה בשל השפעות אטמוספיריות וקרקעיות, היכולות לגרום לאות לנוע במסלול עקום או שבור, ואף בכמה מסלולים שונים שלכל אחד אורך משלו.

ככל שזווית ההגבהה (יחסית לאופק) של הלוויין הנקלט יותר נמוכה, כך השגיאה כתוצאה מההשפעות האטמוספיריות יותר גדולה.

מקורות נוספים לשגיאה הם: אי-דיוקים במדידת מיקום הלוויינים, שגיאות במדידת זמן ההגעה של האותות, ושגיאות נומריות. ככל שיחס האות לרעש של הלוויין הנקלט יותר גדול, כך שגיאות מדידת זמן ההגעה יותר קטנות.

השגיאה בקביעת המיקום מושפעת גם מהגאומטריה של הלוויינים הנקלטים, ה-GDOP.

התמרה

עריכה

נתוני האלמנך וחישובי המיקום מבוצעים במערכת צירים קרטזית, מערכת ECEF, שראשיתה במרכז הכובד של כדור הארץ והצירים שלה הם ציר הסיבוב של כדור הארץ והקווים המחברים את מרכז כדור הארץ לקו המשווה בקווי האורך אפס (גריניץ') ותשעים. לצורך תצוגה מתורגמים הנתונים לקואורדינטות כדוריות המוכרות של קו אורך, קו רוחב וגובה מעל פני הים. מכיוון שכדור הארץ אינו בדיוק כדור המערכת משתמשת במערכת ייחוס הקרויה WGS84, שבחישוביה קרובה למשטח הגיאואיד (פני הים) ברוב פני כדור הארץ. כדי להתאים מקלט GPS למערכת הייחוס של רשת ישראל צריך לבצע התמרה בין דאטומים, שבה מזינים למכשיר פרמטרים להתאמה בין שתי מערכות הייחוס הללו. במדינת ישראל אחראי המרכז למיפוי ישראל על חלוקת הפרמטרים הללו.

קביעת המהירות על סמך אותות הלוויין

עריכה

בנוסף למיקום, ניתן גם לחשב את מהירות המקלט בהתבסס על השפעת תוצא דופלר על אותות הלוויין. אם למקלט יש שעון מדויק, אזי מספיקים 3 לוויינים. במקלט סטנדרטי, בו אין שעון מדויק, מספיקים 4 לוויינים לחישוב המהירות.[6]

שימושים

עריכה
 
מכשיר ניווט לווייני
 
פגז אקסקליבר אם-982 מונחה GPS

בעבר היה מחירם של מקלטי הממח"ע (GPS) גבוה, והם שימשו לצרכים צבאיים בלבד כניווט טילים והנחייתם. משרד ההגנה האמריקאי גם מנע שימוש אזרחי בניווט מונחה לוויינים בעל דיוק רב על ידי הצפנת האותות הדרושים לכך.

בשנות התשעים הוזלו מחירי המקלטים, וכיום זמינים מעגלים מודפסים המאפשרים ניווט בדיוק של מטרים בודדים ופחות מכך. בעקבות זאת נוספו לניווט מונחה הלוויינים שימושים אזרחיים כמערכות ניווט והתמצאות למכוניות פרטיות, מכשירי ניווט ניידים למטיילים בשטח ושירותים מבוססי מיקום. מכשירי GPS צבאיים כוללים מודול SAASM שמגדיל דיוק השרות.

לוויינים

עריכה
בלוק I‏,1978-1996
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
22 בפברואר 1978 OPS 5111 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-17 ביולי 1985
13 במאי 1978 OPS 5112 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-16 ביולי 1981
7 באוקטובר 1978 OPS 5113 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-18 במאי 1992
11 בדצמבר 1978 OPS 5114 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-14 באוקטובר 1989
9 בפברואר 1980 OPS 5117 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-28 בנובמבר 1983
26 באפריל 1980 OPS 5118 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-6 במרץ 1991
19 בדצמבר 1981 - בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F שיגור כושל
14 ביולי 1983 OPS 9794 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-4 במאי 1993
13 ביוני 1984 USA-1 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-20 ביוני 1994
8 בספטמבר 1984 1984-097A USA-5 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-15 במרץ 1996
9 באוקטובר 1985 1985-093A USA-10 בסיס חיל החלל ונדנברג,
כן שיגור SLC-3E
אטלס E/F סיים פעילות ב-13 באפריל 1994
בלוק II‏,1989-2006
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
14 בפברואר 1989 USA-35 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-26 במרץ 2000
10 ביוני 1989 USA-38 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-22 בפברואר 2004
18 באוגוסט 1989 USA-42 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-13 באוקטובר 2000
21 באוקטובר 1989 USA-47 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-16 במרץ 2001
11 בדצמבר 1989 USA-49 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-23 בפברואר 2005
24 בינואר 1990 USA-50 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-18 באוגוסט 2000
26 במרץ 1990 USA-54 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-21 במרץ 1996
2 באוגוסט 1990 USA-63 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-25 בספטמבר 2002
1 באוקטובר 1990 USA-64 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-17 בנובמבר 2006
בלוק IIA‏,1990-2019
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
26 בנובמבר 1990 USA-66 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-25 בינואר 2016
4 ביולי 1991 USA-71 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-30 בספטמבר 2011
23 בפברואר 1992 USA-79 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-18 בדצמבר 2009
10 באפריל 1992 USA-80 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-15 באוגוסט 1997
7 ביולי 1992 USA-83 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-6 בינואר 2015
9 בספטמבר 1992 USA-84 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-10 באוגוסט 2011
22 בנובמבר 1992 USA-85 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-17 במרץ 2008
18 בדצמבר 1992 USA-87 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-23 באוקטובר 2007
3 בפברואר 1993 USA-88 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-3 בדצמבר 2002
30 במרץ 1993 USA-90 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-24 באוקטובר 2005
13 במאי 1993 USA-91 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-18 במרץ 2016
26 ביוני 1993 USA-92 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-19 במאי 2014
30 באוגוסט 1993 USA-94 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-1 במאי 2013
26 באוקטובר 1993 USA-96 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-9 באוקטובר 2019
10 במרץ 1994 USA-100 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-21 בפברואר 2014
28 במרץ 1996 USA-117 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-2 באוגוסט 2014
26 ביולי 1996 USA-126 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-11 במרץ 2016
12 בספטמבר 1996 USA-128 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-20 ביולי 2011
6 בנובמבר 1997 USA-135 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-9 באוקטובר 2019
בלוק IIR‏,1997-
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
6 בנובמבר 1997 USA-132 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
7 באוקטובר 1999 USA-145 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-10 בנובמבר2020
7 באוקטובר 1999 USA-145 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-10 בנובמבר 2020
11 במאי 2000 USA-150 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-23 ביוני 2021
10 בנובמבר 2000 USA-154 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-25 בינואר 2023
30 בינואר 2001 USA-156 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-5 במרץ 2018
29 בינואר 2003 USA-166 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
31 במרץ 2003 USA-168 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 פעיל
21 בדצמבר 2003 USA-175 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 סיים פעילות ב-18 בינואר 2022
20 במרץ 2004 USA-177 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 פעיל
22 ביוני 2004 USA-178 נמל החלל קייפ קנוורל,
כן שיגור LC-17B
דלתא 2 סיים פעילות ב-2 במרץ 2020
6 בנובמבר 2004 USA-180 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
בלוק IIRM‏,2004-
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
26 בספטמבר 2006 USA-183 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
17 בנובמבר 2006 USA-192 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
17 באוקטובר 2007 USA-196 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
20 בדצמבר 2007 USA-199 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
15 במרץ 2008 USA-201 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
24 במרץ 2009 USA-203 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 בעתודה
17 באוגוסט 2009 USA-206 נמל החלל קייפ קנוורל,
כן שיגור LC-17A
דלתא 2 פעיל
בלוק IIF‏,2010-
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
28 במאי 2010 USA-213 נמל החלל קייפ קנוורל,
כן שיגור LC-37B
דלתא 4 פעיל
16 ביולי 2011 USA-232 נמל החלל קייפ קנוורל,
כן שיגור LC-37B
דלתא 4 פעיל
4 באוקטובר 2012 USA-239 נמל החלל קייפ קנוורל,
כן שיגור LC-37B
דלתא 4 פעיל
15 במאי 2013 USA-242 נמל החלל קייפ קנוורל,
כן שיגור LC-41
אטלס 5 פעיל
21 בפברואר 2014 USA-248 נמל החלל קייפ קנוורל,
כן שיגור LC-37B
דלתא 4 פעיל
17 במאי 2014 USA-251 נמל החלל קייפ קנוורל,
כן שיגור LC-37B
דלתא 4 פעיל
2 באוגוסט 2014 USA-256 נמל החלל קייפ קנוורל,
כן שיגור LC-41
אטלס 5 פעיל
29 באוקטובר 2014 USA-258 נמל החלל קייפ קנוורל,
כן שיגור LC-41
אטלס 5 פעיל
25 במרץ 2015 USA-260 נמל החלל קייפ קנוורל,
כן שיגור LC-37B
דלתא 4 פעיל
15 ביולי 2015 USA-262 נמל החלל קייפ קנוורל,
כן שיגור LC-41
אטלס 5 פעיל
31 באוקטובר 2015 USA-265 נמל החלל קייפ קנוורל,
כן שיגור LC-41
אטלס 5 פעיל
5 בפברואר 2016 USA-266 נמל החלל קייפ קנוורל,
כן שיגור LC-41
אטלס 5 פעיל
בלוק III‏,2018-
תאריך שיגור שם חללית אזור שיגור משגר סטטוס נוכחי
23 בדצמבר 2018
Vespucci
USA-289 נמל החלל קייפ קנוורל,
כן שיגור SLC-40
פאלקון 9 בלוק 5 פעיל
22 באוגוסט 2019
Magellan
USA-293 נמל החלל קייפ קנוורל,
כן שיגור SLC-37B
דלתא 4 פעיל
5 בנובמבר 2020
Sacagawea
USA-309 נמל החלל קייפ קנוורל,
כן שיגור SLC-40
פאלקון 9 בלוק 5 פעיל
17 ביוני 2021
Neil Armstrong
USA-319 נמל החלל קייפ קנוורל,
כן שיגור SLC-40
פאלקון 9 בלוק 5 פעיל
18 בינואר 2023
Amelia Earhart
USA-343 נמל החלל קייפ קנוורל,
כן שיגור SLC-40
פאלקון 9 בלוק 5 פעיל

ראו גם

עריכה

קישורים חיצוניים

עריכה

הערות שוליים

עריכה
  1. ^ 1 2 3 ניצן סדן, הקברניט ניווט קטלני: מרחץ הדמים המעופף שבזכותו יש לנו GPS, באתר כלכליסט, 28 ביולי 2018
  2. ^ לי פלג, מדוע הזמן טס יותר מהר בחלל?, באתר ynet, 23 ביוני 2017
  3. ^ הצהרה של הבית הלבן בנושא
  4. ^ GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE
  5. ^ למפת מיפוי התחנות ונתונים נוספים, באתר המרכז הישראלי למיפוי
  6. ^ 1 2 3 Elliott D Kaplan, Christopher J. Hegarty, Understanding GPS/GNSS THIRD EDITION, Artech House, 2017