שדה המספרים ה-p-אדיים
ערך מחפש מקורות | |
במתמטיקה, שדה המספרים ה-p-אדיים הוא שדה, שאבריו הם המספרים ה-p-אדיים. יש שדה -אדי אחד לכל מספר ראשוני , ומקובל לסמן אותו באות . כל הרחבה סופית של שדה המספרים ה--אדיים נקראת "שדה -אדי".
על שדה המספרים ה--אדיים מוגדרת הערכה בדידה, ההופכת אותו לשדה מקומי, שהוא בעל עוצמת הרצף, ואינו ניתן לסידור. לפי משפט אוסטרובסקי, כל שדה מקומי ממאפיין אפס (עם ערך מוחלט לא ארכימדי) הוא -אדי לאיזשהו .
את המספרים ה--אדיים פיתח קורט הנזל בתחילת המאה העשרים, והם הפכו במהירות לאחד הכלים ומושאי המחקר הבסיסיים באריתמטיקה המודרנית ובתורת השדות.
תכונות
עריכהכל מספר -אדי אפשר לכתוב באופן יחיד בצורה כאשר שלם, ו- . החיבור והכפל מוגדרים כאילו היה מדובר בטורי חזקות במשתנה אחד.
אלגברה
עריכההמספרים מהצורה נקראים "שלמים -אדיים"; כקבוצה, הם מרכיבים את חוג השלמים ה-p-אדיים , שהוא תת-חוג מקומי וראשי (חוג ההערכה הדיסקרטית המתקבל מההערכה הדיסקרטית שתוצג בתת-הפסקה הבאה) של ; כדי לקבל את השדה די להפוך את האיבר : . חוג השלמים ה- -אדיים הוא גבול הפוך של חוגי המנה .
טופולוגיה
עריכהעל שדה המספרים ה- -אדיים מוגדרת הערכה דיסקרטית (בהנחה ש- ), וזו מגדירה ערך מוחלט לפי ומטריקה ( ), המגדירה טופולוגיה. תחת הטופולוגיה הזו, חוג השלמים ה- -אדיים, שהוא כדור היחידה הסגור בשדה, הוא קבוצה קומפקטית, הומיאומורפית לקבוצת קנטור. השדה אינו קומפקטי, אבל הוא קומפקטי מקומית.
אריתמטיקה
עריכהשורשי היחידה ב- הם אלו שסדרם מחלק את . כאשר אי-זוגי, לשלם רציונלי שאינו מתחלק ב- יש שורש -אדי אם ורק אם יש לו שורש מודולו (כך למשל ); עבור התנאי הוא שיהיה ל- שורש מודולו 8, ולדוגמה . הלמה של הנזל מאפשרת לפתור משוואות פולינומיות בשדה המספרים ה- -אדיים, ובאופן כללי יותר, לפרק פולינומים לגורמים, על ידי הרמה, כביכול, של הבעיה מן המנות הסופיות .
בניגוד לשדה המספרים הממשיים, שיש לו הרחבה אלגברית אחת ויחידה - המרוכבים - לשדה המספרים ה- -אדיים יש הרחבות אלגבריות מכל מימד, ומספרן (בכל מימד) סופי. אם אי זוגי יש בדיוק שלוש הרחבות ריבועיות, ולשדה המספרים ה-2-אדיים יש שבע הרחבות ריבועיות. מבין ההרחבות האלה, יש הרחבה לא מסועפת יחידה מכל מימד.
הסגור האלגברי אינו שלם ביחס לטופולוגיה המושרה; את הסגור השלם מסמנים ב- , ושדה זה הוא סגור גם אלגברית וגם מטרית. מבחינה אלגברית (וללא המבנה המטרי), איזומורפי לשדה המספרים המרוכבים, .
חבורת גלואה של כל הרחבה סופית של היא פתירה, ולכן חבורת גלואה האבסולוטית היא פרו-פתירה.
ראו גם
עריכה