משולש ישר-זווית
משולש יְשַׁר-זווית הוא משולש בעל זווית ישרה.
במשולש זה, שתי הצלעות שכולאות את הזווית הישרה נקראות ניצבים, והצלע שמול הזווית הישרה נקראת יתר.
משולש ישר-זווית הוא הבסיס לפונקציות הטריגונומטריות.
תכונות
עריכה- משולש ישר-זווית מקיים את משפט פיתגורס: סכום שטחי הריבועים הבנויים על הניצבים, שווה לשטח הריבוע הבנוי על היתר.
- התיכון ליתר שווה למחצית מהיתר, ומכאן שהתיכון מחלק את המשולש לשני משולשים שווי-שוקיים.
- משולש ישר-זווית מקיים את משפט תאלס: אם משולש ישר-זווית חסום במעגל, אז היתר מתלכד עם קוטר המעגל, והתיכון ליתר הוא רדיוס במעגל החוסם.
- הגובה ליתר מחלק את המשולש לשני משולשים הדומים למשולש המקורי (ולכן גם דומים זה לזה). מכאן נובע משפט אוקלידס - אורך הניצב הוא הממוצע הגאומטרי של היתר ושל היטלו של הניצב על היתר.
- ריבוע הגובה ליתר שווה למכפלת שני הקטעים שהוא יוצר על היתר (תיכון היתר שווה למחציתו).
- כל ניצב הוא הגובה של הניצב השני.
- הניצב מול זווית של 30 מעלות שווה למחצית היתר. משפט הפוך: אם ניצב שווה למחצית היתר - הזווית מולו שווה ל-30 מעלות.
- חוצה הזווית הישרה חוצה גם את הזווית שבין התיכון לגובה.
נוסחאות
עריכהאם הניצבים של המשולש הם ו- , היתר הוא והגובה ליתר הוא , אז מתקיים:
- (משפט פיתגורס)
וכן:
שטח המשולש הוא:
אם רדיוס המעגל החסום במשולש הוא , אז מתקיים:
אם התיכונים לניצבים הם ו- והתיכון ליתר הוא , אז מתקיים:
הגדרת פונקציות טריגונומטריות
עריכה- ערך מורחב – פונקציות טריגונומטריות
את הפונקציות הטריגונומטריות, עבור זווית בין 0 ל-90 מעלות ( רדיאנים), מגדירים כיחס בין שתי צלעות במשולש ישר-זווית.
עבור זווית הכלואה בין הניצב והיתר ומול הצלע מוגדר:
עבור זווית כללית מגדירים באמצעות מעגל היחידה.
משולשים ישרי-זווית מיוחדים
עריכהמשולש ישר-זווית שזוויותיו הן 90, 60, 30 מכונה לפעמים "משולש הזהב", ובו אורך היתר הוא פי 2 מאורך הניצב הקטן. משולש זה הוא חצי ממשולש שווה-צלעות. לעיתים השם "משולש הזהב" שמור למשולש שווה-שוקיים בעל זוויות בסיס של 72 או 36 מעלות, שכן היחס בין השוקיים לבסיס בו הוא יחס הזהב.
בעברית מקובל גם המושג "משולש כסף", למשולש ישר-זווית ושווה-שוקיים. הזוויות שלו הן: 45, 45, 90. היחס בין אורך היתר לאורך הניצב הוא שורש 2, שהוא ככל הנראה המספר האי-רציונלי הראשון שהתגלה.
שלשה פיתגורית
עריכהשלשה פיתגורית (או שלשה פיתגוראית) היא שלשה של מספרים טבעיים המקיימת את השוויון , המופיע במשפט פיתגורס. בהתאם למשפט ההפוך למשפט פיתגורס, משולש שצלעותיו מהוות שלשה פיתגורית הוא משולש ישר-זווית.
ראו גם
עריכהקישורים חיצוניים
עריכה- אתר עזר לפתרון תרגילים במשולש ישר-זווית, freewebs (בעברית)
- אתר עזר לפתרון תרגילים במשולש ישר-זווית, mathportal (באנגלית)
- משולש ישר-זווית, באתר MathWorld (באנגלית)