תכונה 4 למעשה נגררת מתכונות 1-3, אך נהוג לציין אותה כחלק מההגדרה.
דוגמה: אם הוא מרחב מידה, נבחר (ראו מרחב Lp) ונגדיר , כאשר היא הפונקציה המציינת של והכפל באגף ימין הוא נקודתית. אז היא מידה -הטלתית על .
זוהי דוגמה מרכזית מאוד לאנליזה ספקטרלית מכיוון שמשפט הפירוק הספקטרלי באחד מגרסאותיו (הידועה כ'משפט הפירוק הספקטרלי בצורת מידה הטלתית') מוכיח קיום התאמה חד-חד-ערכית ועל בין אופרטורים חסומים וצמודים לעצמם לבין המידות הספקטרליות הנוצרות כפי שמתואר בדוגמה. הכללה של הצורה הזאת לאופרטורים לא חסומים היא התוצאה המרכזית ביותר בחקר אופרטורים לא חסומים על מרחבי הילברט.
אם היא מידה -הטלתית על ו- הם וקטורים ב-, ההעתקה מגדירה מידה מרוכבת רגילה על . ההתאמה היא "מכפלה פנימית מידתית" במובן הבא: זוהי תבנית ססקווילינארית המחזירה ערכים ב- (מרחב כל המידות המרוכבות על המרחב המדיד ), מתקיים לכל ו- היא מידה חיובית (סופית) לכל . בנוסף לכך, מידת ההשתנות הכוללת של היא, על פי הגדרה, .
אם הוא מרחב טופולוגי ו- היא אלגברת בורל שלו, אומרים ש- היא רגולרית אם כל אחת מהמידות המרוכבות היא רגולרית. באופן שקול, היא רגולרית אם מתקיים
לכל קבוצת בורל .
בדוגמה שהוזכרה קודם לכן, מתקיים לכל ואם היא מידה רגולרית, אז כל המידות הן רגולריות ולכן המידה היא רגולרית.
תהי פונקציה מרוכבתחסומה ו--מדידה על . אז ניתן להגדיר את האינטגרל של ביחס ל- באופן הבא: תחילה מראים שמתקיים לכל , כאשר היא נורמת הסופרמום של . מכאן מסיקים שהתבנית הססקווילינארית היא חסומה ולכן לפי משפט ההצגה של ריס, קיים אופרטור ליניארי חסום יחיד (התלוי ב-) כך ש- לכל . נאמר ש- הוא האינטגרל של ביחס ל- ונסמן . אם כן, הוא האופרטור הליניארי החסום היחיד על המקיים את השוויון לכל .
ניתן להגדיר את האינטגרל ביחס למידה הטלתית גם בדרך הקונסטרוקטיבית הבאה. אם הפונקציה היא פונקציה פשוטה מדידה, נרשום אותה בצורה עבור מספרים מרוכבים וקבוצות זרות בזוגות . במקרה זה נגדיר . מתורת המידה ידוע שכל פונקציה מרוכבת מדידה וחסומה על היא גבול במידה שווה של סדרת פונקציות פשוטות. לכן אם היא פונקציה כזו ו- היא סדרת פונקציות פשוטות המתכנסת אליה במידה שווה, נגדיר , כאשר הגבול הוא בטופולוגיה הנורמית על (ניתן להוכיח שהוא אכן קיים ובלתי תלוי בבחירת סדרת הפונקציות המתכנסת ל-). שתי הגדרות אלה ל- הן שקולות.
עבור הדוגמה שהוזכרה בתחילת הערך, קל לחשב ולראות ש- לכל מרוכבת מדידה וחסומה ו-.
בשל האקסיומות הייחודיות שמידה הטלתית נדרשת לקיים, אופרטור האינטגרציה שהוגדר לעיל הוא בעל מספר תכונות מעניינות. תכונות אלה מסוכמות במשפט הבא:
משפט: תהי מידה -הטלתית על ונסמן ב- את מרחב כל הפונקציות המרוכבות המדידות והחסומות על . זוהי אלגברת סי כוכב ביחס לפעולות הנקודתיות של חיבור, כפל בסקלר, כפל והצמדה מרוכבת וביחס לנורמת הסופרמום. אז ההעתקה היא הומומורפיזם של אלגבראות כוכב מ- ל-, כלומר:
לכל .
לכל ולכל סקלר .
לכל .
לכל .
זוהי העתקה רציפה. יתרה מזאת, מתקיים אי-השוויון לכל .
המשפטים הרגילים הנוגעים לאינטגרל לבג עדיין נכונים גם בהקשר זה, אם מנסחים אותם נכון. לדוגמה:
האינטגרל הוא מונוטוני, במובן הבא: אם היא ממשית ואי-שלילית, אז האופרטור הוא אופרטור חיובי.
משפט ההתכנסות המונוטונית מתקיים: אם הן פונקציות ממשיות אי-שליליות כך ש- ו- נקודתית, אז כאשר ההתכנסות היא בטופולוגיה האופרטורית החזקה.
משפט ההתכנסות הנשלטת מתקיים: אם הן פונקציות מרוכבות, נקודתית וקיים קבוע כך ש- לכל ולכל , אז ביחס לטופולוגיה האופרטורית החזקה.
אם הוא מרחב מדיד, היא מידה -הטלתית על ו- היא מידה -הטלתית על אותו מרחב מדיד, אז אומרים ש- ו- הן דומות אוניטרית אם קיימת העתקה אוניטרית כך ש- לכל .
תורת המבנה של מידות הטלתיות שואפת לייחס קבוצת אינווריאנטות לכל מידה הטלתית אשר מאפיינת אותה לחלוטין עד כדי דמיון אוניטרי. המוטיבציה למציאת אינווריאנטות שכאלה נובעת מהתפקיד שמידות הטלתיות משחקות בתורה הספקטרלית, בה מייצגים אופרטורים נורמליים כאופרטורי אינטגרציה ביחס למידה הטלתית. אפיון של מחלקת המידות ההטלתיות עד כדי דמיון אוניטרי נותן כלי לבדיקה אם שני אופרטורים נורמליים על מרחב הילברט הם דומים אוניטרית (לפרטים נוספים, ראו משפט הפירוק הספקטרלי).
האפיון המדובר ניתן על ידי משפט האן-הלינגר, הקרוי על שמם של האנס האן וארנסט הלינגר. למשפט יש שני נוסחים ונציג את שניהם. כדי להימנע מקשיים טכניים, נציג את המשפט במקרה בו המידה ההטלתית פועלת על מרחב הילברט מרוכב וספרבילי. נשתמש בסימון , כאשר ו- הן מידות חיוביות על אותו מרחב מדיד, אם היא רציפה בהחלט ביחס ל-, כלומר אם לכל קבוצה מדידה . אם מתקיים וגם , נאמר ש- ו- הן מידות שקולות ונסמן . פירוש הדבר הוא של- ו- יש את אותן קבוצות ממידה אפס. זהו יחס שקילות ומחלקת השקילות של ביחס זה תסומן .
משפט האן-הלינגר (נוסח ראשון): תהי מידה -הטלתית על מרחב מדיד ונניח ש- הוא מרחב הילברט מרוכב ספרבילי. אזי קיימת סדרה של מידות חיוביות סופיות על והעתקה אוניטרית כך ש- לכל ולכל .
אם היא סדרה נוספת של מידות חיוביות סופיות עם התכונה לעיל (כלומר, קיימת עבורה העתקה אוניטרית כך ש- לכל ולכל ), אז לכל , המידות ו- הן שקולות.
מהוכחת המשפט גם נובע שהמחלקה המתאימה למידה היא טיפוס ספקטרלי מקסימלי עבור . בכך לומר ש- עבור איזשהו ומתקיים לכל .
לצורך הצגת הנוסח השני של משפט האן-הלינגר, נגדיר קודם מספר מושגים:
שתי מידות חיוביות על אותו מרחב מדיד נקראות סינגולריות הדדית אם קיימות תתי-קבוצות זרות ומדידות של המרחב כולו כך ש- ו-. במילים אחרות, ו- "חיות" בחלקים שונים של המרחב.
עבור מידה ומספר טבעי , מסמן את הסכום הישר של עותקים של המרחב . ניתן לחשוב על מרחב זה גם כעל המרחב של כל הפונקציות המדידות שאינטגרביליות בריבוע, כלומר שעבורן (כאן מסמן נורמה כלשהי על ). הפעולות האלגבריות והמכפלה הפנימית על מרחב זה מוגדרות באופן הטריוויאלי.
באופן כללי, נגדיר את המרחב להיות הסכום הישר של מספר בן-מניה אינסופי של עותקים של . לחלופין, ניתן לחשוב על מרחב זה כעל אוסף הפונקציות המדידות כך ש-. למידע נוסף, ראו מרחב Lp.
משפט האן-הלינגר (נוסח שני): תהי מידה -הטלתית על מרחב מדיד ונניח ש- הוא מרחב הילברט מרוכב ספרבילי. אזי קיימת סדרה של מידות חיוביות סופיות סינגולריות הדדית על והעתקה אוניטרית כך ש- לכל ולכל .
אם היא סדרה נוספת של מידות חיוביות סופיות סינגולריות הדדית עם התכונה לעיל, אז לכל .
אם כן, סדרת המחלקות המיוחסת ל- במשפט האן-הלינגר היא אינווריאנטה של המאפיינת אותה לחלוטין עד כדי דמיון אוניטרי. בתורה הספקטרלית נעשה שימוש במושגים הבאים באופן שכיח:
אומרים של- יש כפליות (או ריבוי) אם (כלומר אינה שקולה למידת האפס).
אומרים של- יש כפליות (עבור ) אם ו- לכל .
אומרים של- יש כפליות יוניפורמית (עבור ) אם ו- לכל .