פתיחת התפריט הראשי

זווית

גודל גיאומטרי
(הופנה מהדף זווית ישרה)
שתי הקרניים (מסומנות באדום) מחלקות את המרחב הדו-ממדי לשתי זווית.
זוויות כגזרות מעגל. גודל הזווית ברדיאנים, שווה ליחס בין אורך הקשת L1 לרדיוס R, ואילו גודל הזווית שווה ליחס בין אורך הקשת L2 לאורך הרדיוס.

בגאומטריה, זווית היא כל אחד משני חלקי המישור הסגורים המוגבלים על ידי שתי קרניים שיש להן נקודת קצה משותפת[1][2][3]. לשם המחשה, מקובל לדמות את המישור לעיגול, ואת שתי הקרניים לשניים מרדיוסיו. על פי דימוי זה, הזווית היא גזרת העיגול המוגבלת על ידי שני רדיוסים. קרני הזווית, או הרדיוסים המגבילים אותה, מכונים שוקי הזווית. נקודת הקצה המשותפת לשתי השוקיים, נקראת קדקוד הזווית. סימון זוויות נעשה, בדרך כלל, באמצעות אותיות האלפבית היווני.

זווית בין שתי עקומות במישור שנחתכות זו עם זו, היא הזווית בין המשיקים לעקומות, בנקודת החיתוך. במרחב התלת-ממדי, זווית בין מישורים נחתכים, היא הזווית הנוצרת בין שני ישרים השוכנים בשני המישורים, והמאונכים לקו החיתוך של המישורים, בנקודה כלשהי. הזווית בין שתי קשתות על פני כדור היא הזווית בין המישורים המכילים אותן.

גודל הזוויתעריכה

בשם זווית, מכנים גם את גודלה של הזווית, שהוא גודל חסר ממד. על פי ההגדרה המקורית, גודל הזווית, הוא חלק המישור המוגבל על ידי שתי שוקיה. כך למשל, במקרה בו שתי שוקי זווית מתלכדות, אחת מהזוויות המתקבלות שווה ל-0, ואילו השנייה שווה ל-1 (זווית שלמה).

בשימושים מתמטיים, גודל הזווית מוגדר על ידי היחס בין הקשת המוגבלת על ידי שוקי הזווית, לבין אורך השוק עצמה (רדיוס הקשת). יחידת המידה בשיטה זו היא הרדיאן[4]. לפי שיטה זו גודל הזווית השלמה הוא   רדיאנים.

בשימושים שאינם מתמטיים, מקובלת הגדרה המבוססת על חלוקת המעגל ל-360 גזרות מעגל שוות[5][6]. כל יחידה כזו קרויה מעלה. הסמל המקובל לציון יחידה זו הוא סימן כתב עילי בצורת עיגול (°).

ניתן להגדיר את גודל הזווית גם במושגים של סיבוב. על פי הגדרה זו, הזווית השלמה מקבילה לסיבוב מלא של קרן או של קטע סביב נקודת הקצה שלהם[7], וגודלן של זוויות שהן קטנות מזווית שלמה, מוגדר על ידי חלקי סיבוב.

למדידה מקורבת של זווית משמש מד זווית - מכשיר מדידה דמוי חצי עיגול, או עיגול שלם, שעליו שנתות עם סימון גודלי הזוויות. מדידה מדויקת יותר יכולה להיעשות באמצעות מד-זווית אלקטרו-מכני.

סוגי זוויותעריכה

 
סוגי זוויות

זווית בודדתעריכה

  • זווית מנוונת – זווית בת 0°.
  • זווית ישרה – רבע מזווית שלמה. זווית בת 90°. במקרה זה כל אחד מן הישרים נקרא אנך.
  • זווית חדה – זווית הקטנה מזווית ישרה (וגדולה מ-0°).
  • זווית קהה – זווית הגדולה מזווית ישרה וקטנה מזווית שטוחה.
  • זווית שטוחה – מחצית מזווית שלמה. זווית בת 180°.
  • זווית נִישָּׂאָה – זווית בת יותר מ-180° אך פחות מ-360°.
  • זווית שלמה – זווית בת 360°.

זוגות של זוויותעריכה

 
זוג ישרים מקבילים, a ו-b, נחתכים על ידי ישר שלישי, t
  • זוויות משלימות – זוג זוויות שסכום גודלם יחד כגודל זווית שטוחה.[דרוש מקור][מפני ש...]
  • זוויות צמודות – זוג זוויות המרכיבות יחד זווית שטוחה.[8]
  • זוויות קודקודיות – זוג זוויות הנמצאות זו מול זו (כלומר, שיש להן קודקוד/נקודה משותפת, אך הן אינן זוויות צמודות), מבין ארבע הזוויות הנוצרות כאשר שני ישרים נחתכים.
  • כאשר ישר אחד חותך שני ישרים, נוצרות שמונה זוויות בעלי שמות אופיינים, ואם שני הישרים הם ישרים מקבילים, נוצרות שוויונות והשלמות מסוגים שונים:[9]
    • זוויות מתאימות – זוג זוויות הנמצאות באותו צד של הישר החותך ובאותו מקום ביחס לשני הישרים (מעל הקו הישר או מתחת הקו הישר). זוויות מתאימות בין ישרים מקבילים שוות זו לזו בגודלן.
    • זוויות חד-צדדיות – זוג זוויות מאותו צד של הישר החותך, הנמצאות שתיהן בין שני הישרים. (פנימיות), או שתיהן מחוץ לשני המקבילים (חיצוניות). סכום זוויות חד-צדדיות בין ישרים מקבילים הוא 180° (כמו זווית שטוחה).[10]
    • זוויות מתחלפות – זוג זוויות משני צדי הישר החותך, הנמצאות שתיהן בין שני הישרים (פנימיות), או שתיהן מחוץ לשני הישרים (חיצוניות). זוויות מתחלפות בין ישרים מקבילים שוות זו לזו בגודלן.

במצולעים שונים יש גם שמות שונים לזוגות של זוויות:

  • זוויות בסיס במשולשים וטרפזים שווי שוקיים הן הזוויות שמול השוקים השוות (בשניהם), וגם בדלתון יש זוויות בסיס ואלו הזוויות שנמצאות בין הצלעות שאינם שוות בדלתון. יש משפט האומר שזוויות בסיס שוות במשולשים וטרפזים שווי שוקיים ובדלתונים. (ההוכחה של המשפט בדלתון מתבססת על חלוקתו לשני משולשים שווי שוקיים, ותקפה לכל סוגי הדלתונים).
  • זוויות נגדיות במרובעים הן זוג זוויות פנימיות של המרובעים ללא שוק משותפת. קיימים שני זוגות כאלה בכל מרובע. יש משפט האומר שזוויות נגדיות במקבילית, ובמרובעים שגם הם סוג של מקבילית, שוות בניהם.

בעיות הקשורות בזוויותעריכה

חצייה של זווית (כלומר חלוקתה לשתי זוויות שוות זו לזו), באמצעות סרגל ומחוגה בלבד, היא בעיית בנייה פשוטה ביותר. טריסקציה של זווית, כלומר חלוקתה לשלוש זוויות שוות, התגלתה כבעיה קשה ביותר. אף שהבעיה הוצגה כבר ביוון העתיקה, הרי שרק במאה ה-19 נמצאה הוכחה שלבעיה זו אין פתרון.

על זוויות במצולע ראו בערך מצולע.

הפונקציות הטריגונומטריות הן פונקציות הפועלות על זוויות. הטריגונומטריה, העוסקת בפונקציות אלה, כוללת משפטים רבים העוסקים בקשרים בין זוויות שונות.

ראו גםעריכה

קישורים חיצונייםעריכה

הערות שולייםעריכה

  1. ^ זווית, באתר אנציקלופדיה למתמטיקה (באנגלית)
  2. ^ כל זווית כוללת את התחום המוגבל על ידי שתי הקרניים, ואת הקרניים עצמן. שתי הזוויות מהוות ביחד את המישור הדו-ממדי כולו.
  3. ^ בדרך כלל, אם לא צוין אחרת, מקובל להתייחס לזווית הקטנה מבין השתיים.
  4. ^ יש המגדירים את הרדיאן כאורך הקשת במעגל יחידה (שרדיוסו 1), בהגדרה זו, אורך הקשת אינו אורך, במובן הרגיל של המילה, שכן הוא חסר ממד.
  5. ^ את הזווית השלמה קבעו הבבלים, שספרו בבסיס 60, וחילקו אותה לשישה חלקים בני שישים מעלות כל אחד
  6. ^ מוכרות חלוקות אחרות של הזווית השלמה. כך למשל, הגראד היא יחידה המבוססת על חלוקת הזווית השלמה ל-400 חלקים שווים
  7. ^ הגדרה זו שימושית במיוחד בשימושים פיזיקליים, בהם מתייחסים לעצמים המסתובבים סביב ציר פעמים רבות. כך למשל, יחידת הסל"ד, מציינת את מספר הסיבובים שעושה גוף סביב ציר בדקה.
  8. ^ ההגדרה לא כל כך ברורה. ממליץ לשנות להגדרה זאת: "זוויות צמודות הן זוג זוויות בעלי קודקוד ושוק משותפות, כאשר השוקיים שאינם משותפות הם חלקים של ישר אחד." וכן להוסיף בנפרד את המשפט: "זוויות צמודות משלימות זו את זו ל-180°".
  9. ^ שני ישרים מקבילים, באתר דע מדע
  10. ^ יש לשים לב שזוויות חד צדדיות, זוויות מתחלפות וזוויות מתאימות קיימות בין כל שני ישרים הנחתכים על ידי ישר שלישי (גם אם אינם מקבילים), אבל משפטי השוויון וההשלמה ל-180° מתקיימים *רק* אם שני הישרים מקבילים.