פורטל:מתמטיקה

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

אינטגרל קווי (לעיתים גם אינטגרל לאורך עקום, אינטגרל מסלולי או אינטגרל מסילתי) הוא אינטגרל המחושב לאורך מסילה במרחב, ולאו דווקא לאורך קטע ממשי. כמו האינטגרל הרגיל, האינטגרל הקווי מסכם ערכים של פונקציה נתונה ומשקלל אותם לפי אורך המסילה, באופן המכליל סיכום של מספר סופי של ערכים. הפונקציה שאת האינטגרל שלה מחשבים עשויה לקבל ערכים ממשיים, או ערכים וקטוריים בכל מרחב בנך (ובכלל זה המרחב האוקלידי).

הצורך באינטגרל קווי עולה בעת ניתוח גדלים הקשורים בתנועה במסלול שאינו ישר, או בתכונות פיזיקליות של גוף עקום, כגון חוט דק. בדרך זו, ניתן לחשב גדלים כדוגמת אורך, מסה, או מטען חשמלי. האינטגרל הקווי מחשב כוח הפועל על גוף המיוצג על ידי עקום, או עבודה של כוח המניע מסה לאורכו, כמו גם התנהגות של שדות פיזיקליים (למשל, שדה חשמלי) על פני מסלולים.

לאינטגרלים קוויים של פונקציות אנליטיות או הרמוניות ישנן תכונות מתמטיות הקושרות אותם לערכי הפונקציה במשטח שאותו סוגר העקום. בקשרים אלה עוסקים כמה משפטים באנליזה מרוכבת, באנליזה וקטורית ובאנליזה הרמונית.

TorusKnot3D.png

"קשר טורוס" הוא קשר המלופף על פניו של טורוס. קשר זה מקובל לאפיין על ידי שני מספרים זרים, q ו-p, כאשר q הוא מספר הליפופים על הטורוס ו- p הוא מספר הפעמים בו הוא עובר דרך ה"חור" שבמרכז הטורוס.

כל פעילות אנושית, טובה או רעה, להוציא מתמטיקה, חייבת להגיע לכלל סיום

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: Project Euler (באנגלית)

פרויקט אוילר הוא אתר חידות מתמטיות-אלגוריתמיות, הקרוי על שמו של המתמטיקאי השווייצרי בן המאה ה-18, לאונרד אוילר.

החידות באתר מתאפיינות בכך שהן מציגות לפותר בעיות להן פתרון כוח גס פשוט ומתבקש אך בלתי ישים על מחשבים בימינו (סיבוכיותו גבוהה מדי). לכן, הפותר נאלץ להפגין תובנה מתמטית למציאת שיטות יעילות יותר לפתרון הבעיה. עם פתרון כל חידה, נחשף בפני הפותר פורום בו משתפים ביניהם הפותרים השונים את השיטות בהן נעזרו לשם הפריה הדדית ולעידוד הפותרים לחשוב על שיטות נבונות יותר בהמשך.

ג'ון פורבס נאש

ג'ון פורבס נאש הבן (13 ביוני 1928 – 23 במאי 2015), מתמטיקאי אמריקאי המתמחה בתורת המשחקים וגאומטריה דיפרנציאלית.

בשנת 1994 קבל פרס נובל לכלכלה, עבור עבודתו החלוצית משנות ה-50 בתורת המשחקים. עם הישגיו האקדמיים הבולטים נמנים פתוח 'שיווי משקל נאש' ופתרון 'בעיית המיקוח של נאש', המהווים מושגי יסוד בפתרון בעיות 'משחקים שיתופיים' ו'משחקים אי-שיתופיים' בתורת המשחקים בתחומי הכלכלה, הביולוגיה ומדע המדינה. הקריירה האקדמית המזהירה של נאש עומדת בצל מחלת הסכיזופרניה, שבה לקה בסמוך לפריצתו כמתמטיקאי מחונן בשנות ה-50. בשל המחלה נפסקה הקריירה האקדמית של נאש למשך כ-30 שנה (1966-1996) ורק בשנות ה-90 שב לחקר המתמטיקה.

נאש נולד בבלופילד שבמערב וירג'יניה, בן לג'ון נאש האב, טכנאי אלקטרוניקה, ווירג'יניה מרטין, מורה לשפות. בשנים (1945-1948) למד לתואר ראשון ושני במכון הטכנולוגי קרנגי בפיטסבורג, פנסילבניה (כיום אוניברסיטת קרנגי מלון), והוכתר על ידי מוריו כגאון. ב-1950 קבל נאש תואר דוקטור מאוניברסיטת פרינסטון על חיבורו "משחקים אי-שיתופיים". בעבודה זו פיתח לראשונה את פתרונו הבסיסי למשחקים אי-שיתופיים שזכה מאוחר יותר לכינוי 'שיווי משקל נאש'. 40 שנה מאוחר יותר, ב-1994, זיכתה אותו עבודתו זו משנותיו הראשונות בפרינסטון בפרס נובל לכלכלה. על עבודה זו קיבל נאש ב-1978 גם את פרס ג'ון פון ניומן לתאוריה.

תרשים של משפט פיתגורס

תחום עניין מעט יוצא דופן בפועלו של המתמטיקאי קרל פרידריך גאוס, היה חקר האפשרות של קיום חיים מחוץ לכדור הארץ. גאוס היה הראשון שהעלה רעיון יצירתי איך להעביר מסר אופטי לחוצנים תבוניים אחרים. גלי הרדיו לא נתגלו עדיין, כך שתקשורת רדיו לא הובאה בחשבון. הרעיון של גאוס היה לטעת במדבר סהרה שטח מוריק בן מאות קמ"ר בצורת תרשים של משפט פיתגורס. אם יבחינו החוצנים בטלסקופים שלהם בצורה הזאת, הם יבינו כי הסבירות שהיא מקרית נמוכה ביותר ויסיקו שיצרה אותה ציוויליזציה מתקדמת.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Shapira-infinity1.png

אינסוף – המסע שאינו נגמר, חיים שפירא, הוצאת כנרת 2010

הספר "אינסוף – המסע שאינו נגמר", שכתב חיים שפירא ב-2010, עוסק במתמטיקה ונועד להנגיש את המתמטיקה לקהל הרחב. הספר כולל סימונים מתמטיים, הוכחות (נדיר בספרי מתמטיקה פופולרית) ואף תרגילי מחשבה מתמטיים לקורא, חלקם קלים יותר וחלקם קשים מאוד. שפירא מתבל את הספר בהומור, אנקדוטות, מידע היסטורי, אמרות כנף וקריקטורות של המאייר דני קרמן, על מנת להנגיש את המתמטיקה לקהל רחב, ולהפוך את קריאת הספר לקלילה וזורמת.

הספר מחולק לשלושה חלקים וכל חלק הוא בנושא אחר במתמטיקה. נושאי הספר הם:

  1. "מבוא למחשבה", ובו מספר חידות מתמטיות ובעיות פתורות הבאות להדגים את החשיבה המתמטית ולגרות את הקורא לפתור את חלקן בעצמו.
  2. תורת המספרים, ובו סוקר שפירא משפטים מוכחים ובעיות פתוחות בתורת המספרים, החל מפיתגורס, עבור בסדרת פיבונאצ'י וכלה במשפט האחרון של פרמה. חלק זה כולל לצד אנקדוטות, מידע היסטורי, ציטוטים והומור גם הוכחות מתמטיות ותרגילי מחשבה לקורא, חלקם קשים.
  3. תורת הקבוצות הנאיבית ובפרט עוצמות אינסופיות ופרקטלים. חלק זה נפתח עם הפרדוקסים של זנון וגרסאות נוספות של פרדוקסים אלה, אך מרכז החלק הוא ואריאציה עם הומור על המלון של הילברט ובו הוכחות שקבוצות המספרים הטבעיים החיוביים ממש, הטבעיים זוגיים, השלמים והרציונליים בנות מנייה ואילו הממשיים לא. גם בחלק זה משבץ שפירא הומור ותרגילי מחשבה לקורא.
כדור הארץ

נתון כבל המועבר על פני כל ההיקף של כדור הארץ.

מה האורך שצריך להוסיף לכבל אם רוצים להגביה אותו במטר מעל כל נקודה בהיקף כדור הארץ?

(הערה: הניחו שכדור הארץ הוא כדור מושלם. קוטר כדור הארץ הוא 12,742 ק"מ בקירוב).


משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

משפט ארבעת הריבועים של לגראנז' הוא מן התוצאות הקלאסיות והאלגנטיות בתורת המספרים. המשפט, אותו הוכיח ז'וזף לואי לגראנז' ב-1770, קובע שכל מספר טבעי אפשר לכתוב כסכום של ארבעה ריבועים: לכל מספר טבעי n אפשר למצוא מספרים שלמים a,b,c,d, כך ש- . לדוגמה, .

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

גאומטריה אלגברית היא הענף במתמטיקה העוסק בשילוב של אלגברה מופשטת (בעיקר אלגברה קומוטטיבית) עם גאומטריה. גאומטריה אלגברית עוסקת בלימוד אוסף הפיתרונות של מערכת משוואות פולינומיליות. כאשר ישנו יותר ממשתנה אחד, שיקולים גאומטריים הופכים להיות חשובים לצורך הבנת התופעות השונות המתרחשות. הגאומטריה האלגברית עוסקת לרוב בניסיון להבין את מכלול הפתרונות של משוואות פולינומיליות, ולרוב אינה עוסקת בחיפוש פתרון מסוים. ענף הגאומטריה האלגברית הוא אחד העמוקים ביותר בכל המתמטיקה, הן מבחינה רעיונית, והן מבחינת הטכניקות שמשתמשים בהן בתחום.


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה