פתיחת התפריט הראשי

פורטל:מתמטיקה

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


גאורג קנטור

משפט קנטור הוא משפט מתמטי יסודי בתורת הקבוצות. באופן פורמלי, המשפט קובע שהעוצמה של כל קבוצה קטנה מהעוצמה של קבוצת התת-קבוצות שלה. משמעות המשפט היא שלכל קבוצה, אפילו אינסופית, יש קבוצה גדולה ממנה (במובן מדויק שיוגדר בהמשך). מסקנה מיידית היא שיש אינסוף גדלים אינסופיים השונים זה מזה, ואין אינסוף גדול ביותר.

את המשפט הגה והוכיח אבי תורת הקבוצות, גאורג קנטור, בשנת 1891. שיטת הלכסון אותה המציא כדי להוכיח את המשפט ותוצאות דומות, מנצלת את הסתירות שביסוד פרדוקס הספר ופרדוקס השקרן, ומשמשת בתחומים רבים החורגים מתורת הקבוצות.


Dürer Melancholia I.jpg

התחריט מלנכוליה, 1514. בשל החידתיות הרבה של יצירה זו, ריבוי האלמנטים הסימבוליים ועושר האלמנטים המתמטיים-גאומטריים שבה, היא אחת היצירות שזכו למספר רב של ניתוחים, דיונים ופרשנויות, במגוון נקודות מבט, שנייה אולי רק למונה ליזה של לאונרדו דה וינצ'י. מלנכוליה היא תחריט נחושת, ומוצגת במוזיאון לאמנות יפה שבבוסטון. היצירה כוללת, בין היתר, ריבוע קסם מסדר רביעי ופאון אשר מהווים חלק נכבד מהעברת הרעיון שביצירה.


שני עמודים מלוח לוגריתמים. העמוד הימני מציג, בדיוק של 10 ספרות מימין לנקודה, את הלוגריתמים של המספרים הטבעיים מ-600 עד 850

לוח לוגריתמים הוא טבלה המכילה את הלוגריתמים לפי בסיס 10 של סדרה של מספרים. לוח לוגריתמים היה כלי עזר עיקרי לביצוע פעולות כפל במספרים מרובי ספרות, קודם להמצאתם של המחשב והמחשבון, המאפשרים עריכת פעולות אלה בקלות רבה.

הרעיון הבסיסי מאחורי השימוש בלוח לוגריתמים הוא הכלל לפיו לוגריתם של מכפלה שווה לסכום הלוגריתמים של כל אחד מאיברי המכפלה (בנוסחה: ). כלל זה מאפשר להחליף פעולת כפל, שהיא פעולה מורכבת יחסית, בפעולת החיבור הפשוטה יותר. סרגל חישוב פועל על פי עיקרון זהה, ולמעשה מבצע באופן מכני פעולה המקבילה לכפל באמצעות לוח לוגריתמים.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: Plus (באנגלית)

מגזין אינטרנט בריטי, שנועד לחשוף את הקורא לקסם של המתמטיקה, ועושה זאת בהצלחה רבה, באמצעות מאמרים, ראיונות, חידות ומשחקים.


ג'ון פורבס נאש

ג'ון פורבס נאש הבן (13 ביוני 1928 - 23 במאי 2015), מתמטיקאי אמריקאי המתמחה בתורת המשחקים וגאומטריה דיפרנציאלית.

בשנת 1994 קבל פרס נובל לכלכלה, עבור עבודתו החלוצית משנות ה-50 בתורת המשחקים. עם הישגיו האקדמיים הבולטים נמנים פתוח 'שיווי משקל נאש' ופתרון 'בעיית המיקוח של נאש', המהווים מושגי יסוד בפתרון בעיות 'משחקים שיתופיים' ו'משחקים אי-שיתופיים' בתורת המשחקים בתחומי הכלכלה, הביולוגיה ומדע המדינה. הקריירה האקדמית המזהירה של נאש עומדת בצל מחלת הסכיזופרניה, שבה לקה בסמוך לפריצתו כמתמטיקאי מחונן בשנות ה-50. בשל המחלה נפסקה הקריירה האקדמית של נאש למשך כ-30 שנה (1966-1996) ורק בשנות ה-90 שב לחקר המתמטיקה.

נאש נולד בבלופילד שבמערב וירג'יניה, בן לג'ון נאש האב, טכנאי אלקטרוניקה, ווירג'יניה מרטין, מורה לשפות. בשנים (1945-1948) למד לתואר ראשון ושני במכון הטכנולוגי קרנגי בפיטסבורג, פנסילבניה (כיום אוניברסיטת קרנגי מלון), והוכתר על ידי מוריו כגאון. ב-1950 קבל נאש תואר דוקטור מאוניברסיטת פרינסטון על חיבורו "משחקים אי-שיתופיים". בעבודה זו פיתח לראשונה את פתרונו הבסיסי למשחקים אי-שיתופיים שזכה מאוחר יותר לכינוי 'שיווי משקל נאש'. 40 שנה מאוחר יותר, ב-1994, זיכתה אותו עבודתו זו משנותיו הראשונות בפרינסטון בפרס נובל לכלכלה. על עבודה זו קיבל נאש ב-1978 גם את פרס ג'ון פון ניומן לתאוריה.

Fantastic Fiction - Search



שניים אוחזין בטלית, זה אומר: "אני מצאתיה", וזה אומר: "אני מצאתיה"; זה אומר: "כולה שלי", וזה אומר: "כולה שלי" - זה יישבע שאין לו בה פחות מחציהּ, וזה יישבע שאין לו בה פחות מחציהּ, ויחלוקו. זה אומר: "כולה שלי:, וזה אומר: "חציהּ שלי" - האומר "כולה שלי", יישבע שאין לו בה פחות משלושה חלקים, והאומר "חציהּ שלי", יישבע שאין לו בה פחות מרביע. זה נוטל שלושה חלקים, וזה נוטל רביע.

משנה, מסכת בבא מציעא, פרק א', משנה א'. הדגמה של שניים אוחזים בטלית, עקרון קדום במשפט העברי בעל בסיס מתמטי. ראו גם מי שהיה נשוי שלוש נשים


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

What is the name he.jpg

ריימונד סמוליאן, מה שמו של ספר זה? - תעלומת דרקולה וחידות היגיון אחרות, תרגם מאנגלית: עידו אמין, כנרת בית הוצאה לאור, 2006

ריימונד סמוליאן הוא מתמטיקאי, לוגיקן ופילוסוף אמריקאי, שצבר מוניטין גם כמחברם של ספרי חידות, שלפתרונן נדרש שימוש בלוגיקה. באחרית דבר לספר עמד מאיר גולדברג על ייחודו של סמוליאן:

"סמוליאן מתרגל את קוראיו בנושאים מתקדמים הנלמדים באוניברסיטה. הוא מתחיל בגרעין מצומצם של נושאים שנבחרו בקפידה, רוקם סביבם עלילה פנטסטית, ומתוך העלילה וחוקי המרחב הפנטסטי שיצר, הוא שואב שפע של חידות ובעיות לוגיות, שעשועים ותגליות בזעיר אנפין. מתוך התמודדות עם החידות הללו, הקוראים לומדים פרקים שלמים בלוגיקה מבלי להזדקק לטרמינולוגיה המקובלת בתחום".

מוט שאורכו מטר אחד נשבר באקראי בשתי נקודות (שנבחרות באופן בלתי תלוי זו בזו). מה ההסתברות שמשלושת החלקים המתקבלים ניתן לבנות משולש?



משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

אי-שוויון ברנולי הוא אי-שוויון יסודי ושימושי באנליזה מתמטית, המאפשר להעריך את הביטוי . האי-שוויון קובע ש- לכל מספר שלם ולכל מספר ממשי . את האי-שוויון אפשר להוכיח באינדוקציה.

בעזרת אי-שוויון זה אפשר להראות שהסדרה עולה בזמן שהסדרה יורדת, וכך להגדיר את בסיס הלוגריתם הטבעי, , כגבולן המשותף.

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת הקודים היא תחום במתמטיקה ובמדעי המחשב שעוסק בהעברה יעילה של מידע דרך מערכת מציאותית שיוצרת שגיאות ברצף. כאשר מעבירים מידע דרך מוליך טוב ככל שיהיה (גלי רדיו, קווי טלפון), נופלות טעויות במידע כתוצאה מרעשי רקע שנוצרים מסיבות טכניות בעיקר. שגיאה קטנה ככל שתהיה יכולה לעוות את המידע המתקבל ולהפוך אותו לחסר משמעות, או לבעל משמעות שונה מהרצוי. הבעיה קיימת מאז ומעולם גם בשפת הדיבור והכתיבה. ניתן לראות טעויות דפוס שנובעות מהחלפת אותיות כמעט בכל ספר שיוצא לשוק. בעיה זו נעשתה חריפה במיוחד בתקשורת בין מחשבים, בה שינוי של ביט אחד במסר יכול להרוס את החישוב כולו.

בתורת הקודים מפותח מושג הקוד וכן גם כלים שמאפשרים הבחנה ותיקון שגיאות במידע המתקבל.





ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה