פורטל:מתמטיקה

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

יסודות (ביוונית: Στοιχεῖα) הוא חיבור בן שלושה עשר חלקים, שנכתב על ידי המתמטיקאי ההלניסטי אוקלידס בראשית המאה השלישית לפנה"ס. בספר מאורגנים באופן שיטתי הגדרות, אקסיומות ומשפטים בגאומטריה, בתורת המספרים ובאלגברה בסיסית. "יסודות" הוא הספר הקדום ביותר מסוג זה ששרד עד ימינו, והייתה לו השפעה מכרעת על התפתחותם של הלוגיקה, המתמטיקה והמדע בכלל.
הספר נחשב לאחד הספרים המצליחים ביותר שנכתבו מאז ומעולם. עותקים של הספר הגיעו מביזנטיום לארצות ערב, ואז תורגמו מערבית ללטינית במאה ה-12. "יסודות" הודפס לראשונה בוונציה ב-1482, במהדורה המבוססת על עותק של ג'ובאני קמפנו משנת 1260, וזכה מאז ליותר מאלף מהדורות דפוס. בין המהדורות ראוי לציון תרגום לעברית שנעשה בעידודו של הגאון מווילנה (האג, תק"ם 1780). מספר עותקים של הטקסט היווני שרדו עד ימינו, ומצויים למשל בספריית הוותיקן ובאוקספורד. עותקים אלה אינם שלמים, ונדרשת עבודה רבה כדי לשחזר את המקור ברמת מהימנות גבוהה.

פיתגורס (ביוונית: Πυθαγόρας), פילוסוף ומתמטיקאי יווני, חי כמשוער בין השנים 496-582 לפני הספירה.
מייסד האסכולה הפיתגוראית, שהייתה קהילה דתית-פילוסופית שהאמינה שאפשר לתאר את כל העולם ביחסים מתמטיים בין מספרים טבעיים, ודגלה באורח-חיים של פשטות המוקדש לעיון והתבוננות, ובצמחונות. בני אסכולה זו נמנים עם הפילוסופים הקדם-אליאטים.
פיתגורס גילה שקיים יחס מספרי בין אורכי המיתרים ובין הצלילים המפיקים מהם, ושניתן לתרגם את תנועת הכוכבים לנוסחה מתמטית. מכאן הסיק שניתן לתרגם כל דבר למספרים ושכל דבר הוא התגלמות של מספר או נוסחה מספרית. פיתגורס ייחס חשיבות רבה ללימודי הגאומטריה, אך המסורת היוונית ייחסה את ראשיתה דווקא לתאלס. רק במסורת הרומית, המאוחרת יותר, זכה פיתגורס למעמד של ממציא המתמטיקה ומחבר לוח הכפל. כיום זכור בעיקר על-פי משפט פיתגורס, הנקרא על שמו.

האם אפשר לצבוע כל מפה מדינית, כך שכל שתי מדינות בעלות קו גבול משותף נצבעות בצבע שונה, תוך שימוש בארבעה צבעים בלבד?
משפט ארבעת הצבעים מבטיח כי הדבר אפשרי. משפט זה הוא תוצאה בולטת בהיסטוריה של הטופולוגיה הקומבינטורית ושל תורת הגרפים.

חידת ה-15 היא חידה מכנית המורכבת מלוח בן 16 משבצות, שבתוכו 15 לוחיות הנושאות את המספרים 1-15 ומשבצת אחת נותרת ריקה. כדי לפתור אותה יש לצאת ממצב שבו הלוחיות מעורבבות על הלוח, לסדר אותן לפי הסדר, כאשר הפעולה החוקית היחידה המותרת היא הזזת לוחית הסמוכה למשבצת הריקה לתוכה (ועל ידי כך יצירת משבצת ריקה חדשה). לאחר שהחידונאי סם לויד, שנודע כממציא החידה, הציע פרס כספי למי שיצליח להחליף בין הלוחיות 14 ו-15, החל שיגעון של ממש שארך מספר חודשים. למעשה, משימה זו הוכחה כבלתי אפשרית, ולויד ידע שכספו בטוח. בכל אופן, ספר בשם "The 15 Puzzle book" שיצא ב-2006 קבע כי לא לויד הוא ממציא החידה, אלא הדוור נויס פלמר צ'פמן.
מתמטקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
משפט פיתגורס. אחד המשפטים המנוסחים הראשונים בהיסטוריה של המתמטיקה.
נתונים 10 שקים. בכל אחד מהם נמצאים המון מטבעות. כל המטבעות שוקלים 1 גרם, מלבד שק אחד שהמטבעות בו מזויפים ושוקלים 2 גרם. ברשותך מאזניים דיגיטליים שנותנים משקל מספרי. מהו המספר הקטן ביותר של שקילות שדרוש כדי למצוא את השק המזויף?
פתרון | |
---|---|
|
אותה חידה, אלא שהפעם כל שק יכול להיות מזויף או אמיתי. כמה שקילות דרושות הפעם?
פתרון | |
---|---|
|

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.
אתר היום: MAA Online (באנגלית)
האתר של MAA – האגודה המתמטית של ארצות הברית, ובו שלל טורים מעניינים, כולל כאלה שאינם מצריכים בקיאות במתמטיקה.
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.
ספר היום:

ריימונד סמוליאן, מה שמו של ספר זה? – תעלומת דרקולה וחידות היגיון אחרות, תרגם מאנגלית: עידו אמין, כנרת בית הוצאה לאור, 2006
ריימונד סמוליאן הוא מתמטיקאי, לוגיקן ופילוסוף אמריקאי, שצבר מוניטין גם כמחברם של ספרי חידות, שלפתרונן נדרש שימוש בלוגיקה. באחרית דבר לספר עמד מאיר גולדברג על ייחודו של סמוליאן:
- "סמוליאן מתרגל את קוראיו בנושאים מתקדמים הנלמדים באוניברסיטה. הוא מתחיל בגרעין מצומצם של נושאים שנבחרו בקפידה, רוקם סביבם עלילה פנטסטית, ומתוך העלילה וחוקי המרחב הפנטסטי שיצר, הוא שואב שפע של חידות ובעיות לוגיות, שעשועים ותגליות בזעיר אנפין. מתוך התמודדות עם החידות הללו, הקוראים לומדים פרקים שלמים בלוגיקה מבלי להזדקק לטרמינולוגיה המקובלת בתחום".
משפטים מפורסמים
|
השערות מפורסמות
|
השערת רימן היא השערה שהציע בשנת 1859 המתמטיקאי ברנהרד רימן, מגדולי המתמטיקאים של אותה עת. לפי ההשערה, החלק הממשי של כל האפסים (הלא טריוויאליים) של פונקציה מרוכבת הידועה בשם "פונקציית זטא של רימן" הוא . השערה זו, הקשורה קשר עמוק להתפלגות של המספרים הראשוניים, היא מן הבעיות הפתוחות הבולטות ביותר בתורת המספרים ובמתמטיקה בכלל.
נושאים במתמטיקה
| |||
---|---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | ||
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | ||
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | ||
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | ||
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | ||
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | ||
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | ||
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | ||
עריכהמבט על תחום נבחר
תורת הגרפים היא ענף של המתמטיקה העוסק בתכונותיהם של גרפים. ישנם מבנים מתחומים רבים שניתן לייצגם באמצעות גרף, ובעיות מעשיות שונות ניתנות לניסוח (ולפתרון) כבעיות העוסקות בגרפים, ולכן אלגוריתמים לטיפול בגרפים הם נושא מרכזי במדעי המחשב. בפשטות, גרף מייצג מבנה שבו קיימים מספר אובייקטים המקושרים ביניהם. הגרף מייצג את האובייקטים באמצעות הצמתים ואת הקשרים ביניהם באמצעות הקשתות. כאשר לקשרים יש כיוון או ערך, הם מיוצגים על ידי כיוון הקשת או משקלה. דוגמה לשימוש בגרף מכוון הוא המבנה של ויקיפדיה. ניתן לייצג את ויקיפדיה באמצעות גרף מכוון כאשר אחד מהערכים מיוצג על ידי צומת, וקישור המפנה מערך אחד לאחר מיוצג על ידי קשת שיוצאת מהצומת המייצג את הערך המפנה ונכנסת לצומת המייצג את הערך אליו ההפנייה. |
ערכים המחפשים עורכים ![]() |
דיונים, ייעוץ ועזרה
|