פורטל:מתמטיקה

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

Arithmetic symbols2.svg

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.

ריכרד דדקינד, תצלום משנת 1850 לערך

יוליוס וילהלם ריכרד דֶדֶקינד (6 באוקטובר 183112 בפברואר 1916) היה מתמטיקאי גרמני, מממשיכיו הבולטים של ארנסט קומר.

דדקינד נולד בבראונשווייג, והיה הצעיר מבין ארבעת ילדיו של יוליוס לוין אולריך דדקינד. דדקינד מעולם לא השתמש בשני שמותיו הראשונים, וחי עם אחותו הרווקה יוליה עד מותה ב-1914. הוא לא נישא מעולם.

בשנת 1848 החל דדקינד בלימודיו בקולג' המלכותי בבראונשווייג. בשנת 1850, מצויד בבסיס מתמטי חזק, החל ללמוד באוניברסיטת גטינגן. באוניברסיטה זו לימד גאוס, וממנו למד דדקינד על תורת המספרים. בין מוריו החשובים של דדקינד היה גם מוריץ אברהם שטרן שכתב באותו זמן עבודות רבות בתורת המספרים. דדקינד הגיש עבודת דוקטורט קצרה בהנחייתו של גאוס שנקראה "Über die Theorie der Eulerschen Integrale" ("על התאוריה של שלמים אוילריאניים"), אך בעבודה זו לא ניכר הכישרון שייחד את דדקינד בעבודותיו המאוחרות. למרות זאת הכיר גאוס בכישוריו – דדקינד קיבל את הדוקטורט שלו ב-1852 והיה לתלמידו האחרון של גאוס.

Binary clock samui moon.jpg

שעון בינארי. בשעון זה מיוצגות הספרות בבסיס בינארי, בסיס אשר פותח על ידי גוטפריד וילהלם לייבניץ במאה ה-17.

סרטון של זום לתוך קבוצת מנדלברוט

סרטון של זום לתוך קבוצת מנדלברוט, קבוצה של מספרים מרוכבים אשר הגבול של ייצוגן הגאומטרי מהווה את אחת הדוגמאות המוכרות ביותר של פרקטלים במתמטיקה.

לואיס קרול

מספרים על לואיס קרול ששלח למלכה ויקטוריה את ספרו "חיבור בסיסי על דטרמיננטים", העוסק במתמטיקה, לאחר שזו כתבה לו כי נהנתה לקרוא את הרפתקאות אליס בארץ הפלאות וביקשה לקבל את חיבורו הבא עם פרסומו. כיום משערים שזו אגדה אורבנית.

מתמטיקה היא השער והמפתח למדעים

אף מחקר אנושי לא יכול להקרא מדע אמיתי אם לא ניתן לבססו מתמטית.

נוסחה להפרש של שני ריבועים. נוסחה בסיסית באלגברה. כמו יתר הנוסחאות באלגברה בסיסית, פיתוח הנוסחה פשוט מאוד ומבוסס על חוק הפילוג, חוק הקיבוץ וחוק החילוף. אולם שימוש בנוסחה "לכיוון השני" מימין לשמאל מאפשר לבצע מניפולציות לא טריוויאליות משום שהוא מחליף ביטוי שעל פניו לא נראה פריק, במכפלה של שני ביטויים פשוטים יותר. על נוסחה זו מבוסס טריק שנקרא מכפלה בצמוד
Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: Plus (באנגלית)

מגזין אינטרנט בריטי, שנועד לחשוף את הקורא לקסם של המתמטיקה, ועושה זאת בהצלחה רבה, באמצעות מאמרים, ראיונות, חידות ומשחקים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Falk - etgarim.jpg

רומה פלק, אתגרים לתאים האפורים – בעיות, חידות ולקחיהן, ספרית פועליםהוצאת הקיבוץ המאוחד, 2004

הספר מכיל 122 חידות מתמטיות, מהן נודעות ומהן מקוריות. לכל חידה אתגר משלה, ולמי שלא הצליח לפצחו, ניתן פתרון מפורט. המחברת, רומה פלק מהאוניברסיטה העברית בירושלים, מנחה את הקורא:

"איך לקרוא את הספר? לאט לאט ובמינון סביר. אני ממליצה להתייחס לספר זה כמו לשתיית קפה: לא יותר מדי בבת אחת ולא לפני השינה. מומלץ לחשוב לבד על כל בעיה לפני שמציצים בפתרונה. הפתרון יהיה הרבה יותר משמעותי בעבורכם אם הגעתם אליו (או לפתרון אחר) בכוחות עצמכם, או אף אם עשיתם חלק מהדרך ועמדתם על סוד הקושי והסיבוך של הבעיה."
משפטים מפורסמים
השערות מפורסמות

השאלה האם P=NP היא בעיה פתוחה מרכזית במדעי המחשב, העוסקת ביכולת לפתור אוסף גדול של בעיות בצורה יעילה. במילים פשוטות, השאלה היא האם כל בעיה שניתן לבדוק עבורה בצורה יעילה האם פתרון מוצע הוא נכון (בעיה השייכת לקבוצה NP), היא גם בעיה שניתן למצוא עבורה פתרון בצורה יעילה (בעיה השייכת לקבוצה P). לפתרון הבעיה ישנן השלכות תאורטיות ומעשיות רבות, והיא זכתה להכרה כאחת מ"שבע בעיות המילניום" של מכון קליי למתמטיקה. אף שכיום לא ידועה תשובה לשאלה זו, ההשערה הרווחת היא כי P≠NP.

השאלה האם P=NP אינה בעלת ערך אקדמי בלבד. עם התפתחות השימושים המסחריים של ההצפנה בעידן המחשב, ובמיוחד במסחר אלקטרוני, הפכה התשובה לשאלה לבעלת חשיבות כלכלית לא מבוטלת. הסיבה לכך היא שרוב המסחר האלקטרוני ותעשיית האבטחה הדיגיטלית מסתמכים על אלגוריתמים שיכולת ההצפנה שלהם נובעת מחוסר היכולת הנוכחי לפתור בעיות NP בזמן סביר.

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


טופולוגיה היא ענף חדש יחסית במתמטיקה. הטופולוגיה עוסקת בתכונות הנוגעות לצורתם של עצמים מופשטים, ומתמקדת בתכונות הנשמרות גם לאחר הפעלת פונקציות שעונות לארבעת הקריטריונים – פונקציות חד חד ערכיות, על, רציפות ובעלות פונקציה הופכית רציפה. פונקציות שכאלו מכונות הומיאומורפיזמים ועצמים שניתן לעבור מהאחד לשני באמצעותן מכונים הומיאומורפיים. בלשון ציורית, ההבדל בין עצמים אלו הן התכונות שנשמרות גם לאחר הפעלת "עיוות", "מתיחה" ו"כיווץ" – למשל, עיגול ומרובע הם הומיאומורפיים, כי ניתן לעקם את המרובע עד לקבלת עיגול, ולהפך. לעומת זאת, צורת הספרה 8 ומעגל אינם הומיאומורפיים, כי בספרה 8 ישנם שני חורים, ובמעגל חור אחד בלבד.


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה